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Abstract. The theory of port-Hamiltonian systems provides a framework for the geometric
description of network models of physical systems. It turns out that port-based network models
of physical systems immediately lend themselves to a Hamiltonian description. While the usual
geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the
phase space or on a Poisson structure that is obtained by (symmetry) reduction of the phase space,
in the case of a port-Hamiltonian system the geometric structure derives from the interconnection
of its sub-systems. This motivates to consider Dirac structures instead of Poisson structures, since
this notion enables one to define Hamiltonian systems with algebraic constraints. As a result, any
power-conserving interconnection of port-Hamiltonian systems again defines a port-Hamiltonian
system.

The port-Hamiltonian description offers a systematic framework for analysis, control and
simulation of complex physical systems, for lumped-parameter as well as for distributed-para-
meter models.

Mathematics Subject Classification (2000). Primary 93A30,70H05,70H45,70Q05, 70G45,
93B29, 37J60; Secondary 93C10, 93C15, 93C20, 37K05.
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1. Introduction

Historically, the Hamiltonian approach has its roots in analytical mechanics and starts
from the principle of least action, and proceeds, via the Euler-Lagrange equations
and the Legendre transform, towards the Hamiltonian equations of motion. On the
other hand, the network approach stems from electrical engineering, and constitutes a
cornerstone of mathematical systems theory. While most of the analysis of physical
systems has been performed within the Lagrangian and Hamiltonian framework, the
network point of view is prevailing in modelling and simulation of (complex) physical
engineering systems.

The framework of port-Hamiltonian systems combines both points of view, by as-
sociating with the interconnection structure of the network model a geometric struc-
ture given by a (pseudo-) Poisson structure, or more generally a Dirac structure.
The Hamiltonian dynamics is then defined with respect to this Dirac structure and the
Hamiltonian given by the total stored energy. Furthermore, port-Hamiltonian systems
are open dynamical systems, which interact with their environment through ports. Re-
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sistive effects are included by terminating some of these ports on energy-dissipating
elements.

Dirac structures encompass the geometric structures which are classically being
used in the geometrization of mechanics (that is, Poisson structures and pre-symplectic
structures), and allow to describe the geometric structure of dynamical systems with
algebraic constraints. Furthermore, Dirac structures allow to extend the Hamiltonian
description of distributed-parameter systems to include variable boundary conditions,
leading to distributed-parameter port-Hamiltonian systems with boundary ports.

Acknowledgements. This survey is based on joint work with several co-authors. In
particular I thank Bernhard Maschke and Romeo Ortega for fruitful collaborations.

2. Finite-dimensional port-Hamiltonian systems

In this section we recapitulate the basics of finite-dimensional port-Hamiltonian sys-
tems. For more details we refer e.g. to [19], [17], [20], [33], [34], [30], [36], [12], [5].

2.1. From classical Hamiltonian equations to port-Hamiltonian systems. The
standard Hamiltonian equations for a mechanical system are given as

q̇ = ∂H

∂p
(q, p),

ṗ = −∂H

∂q
(q, p) + F

(1)

where the Hamiltonian H(q, p) is the total energy of the system, q = (q1, . . . , qk)
T

are generalized configuration coordinates for the mechanical system with k degrees of
freedom, p = (p1, . . . , pk)

T is the vector of generalized momenta, and the input F is
the vector of external generalized forces. The state space of (1) with local coordinates
(q, p) is called the phase space.

One immediately derives the following energy balance:

d

dt
H = ∂T H

∂q
(q, p)q̇ + ∂T H

∂p
(q, p)ṗ = ∂T H

∂p
(q, p)F = q̇T F, (2)

expressing that the increase in energy of the system is equal to the supplied work
(conservation of energy). This motivates to define the output of the system as e = q̇

(the vector of generalized velocities).
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System (1) is more generally given in the following form

q̇ = ∂H

∂p
(q, p), (q, p) = (q1, . . . , qk, p1, . . . , pk),

ṗ = −∂H

∂q
(q, p) + B(q)f, f ∈ R

m, (3)

e = BT (q)
∂H

∂p
(q, p) (= BT (q)q̇), e ∈ R

m,

with B(q)f denoting the generalized forces resulting from the input f ∈ R
m. In case

m < k we speak of an underactuated system. Similarly to (2) we obtain the energy
balance

dH

dt
(q(t), p(t)) = eT (t)f (t). (4)

A further generalization is to consider systems which are described in local coordinates
as

ẋ = J (x)
∂H

∂x
(x) + g(x)f, x ∈ X, f ∈ R

m,

e = gT (x)
∂H

∂x
(x), e ∈ R

m,

(5)

where J (x) is an n × n matrix with entries depending smoothly on x, which is
assumed to be skew-symmetric, that is J (x) = −J T (x), and x = (x1, . . . , xn) are
local coordinates for an n-dimensional state space manifold X (not necessarily even-
dimensional as above). Because of skew-symmetry of J we easily recover the energy-
balance dH

dt
(x(t)) = eT (t)f (t). We call (5) a port-Hamiltonian system with structure

matrix J (x), input matrix g(x), and Hamiltonian H ([17], [19], [18]).

Remark 2.1. In many examples the structure matrix J will additionally satisfy an
integrability condition (the Jacobi-identity) allowing us to find by Darboux’s theorem
“canonical coordinates”. In this case J is the structure matrix of a Poisson structure
on X.

Example 2.2. An important class of systems that naturally can be written as port-
Hamiltonian systems, is constituted by mechanical systems with kinematic con-
straints [22]. Consider a mechanical system locally described by k configuration
variables q = (q1, . . . , qk). Suppose that there are constraints on the generalized
velocities q̇, described as

AT (q)q̇ = 0, (6)

with A(q) an r × k matrix of rank r everywhere. The constraints (6) are called
holonomic if it is possible to find new configuration coordinates q̄ = (q̄1, . . . , q̄k) such
that the constraints are equivalently expressed as ˙̄qk−r+1 = ˙̄qn−r+2 = · · · = ˙̄qk = 0,

in which case the kinematic constraints integrate to the geometric constraints

q̄k−r+1 = ck−r+1, . . . , q̄k = ck (7)
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for certain constants ck−r+1, . . . , ck determined by the initial conditions. Then the
system reduces to an unconstrained system in the remaining configuration coordinates
(q̄1, . . . , q̄k−r ). If it is not possible to integrate the kinematic constraints as above, then
the constraints are called nonholonomic. The equations of motion for the mechanical
system with constraints (6) are given by the constrained Hamiltonian equations

q̇ = ∂H

∂p
(q, p),

ṗ = −∂H

∂q
(q, p) + A(q)λ + B(q)f,

e = BT (q)
∂H

∂p
(q, p),

0 = AT (q)
∂H

∂p
(q, p).

(8)

The constrained state space is therefore given as the following subset of the phase
space:

Xc =
{
(q, p) | AT (q)

∂H

∂p
(q, p) = 0

}
. (9)

One way of proceeding is to eliminate the constraint forces, and to reduce the equations
of motion to the constrained state space, leading (see [32] for details) to a port-
Hamiltonian system (5). The structure matrix of this reduced port-Hamiltonian system
satisfies the Jacobi identity if and only if the constraints (6) are holonomic [32]. An
alternative way of approaching the system (8) is to formalize it directly as an implicit
port-Hamiltonian system (with respect to a Dirac structure), as will be the topic of
Section 2.3.

2.2. From port-based network modelling to port-Hamiltonian systems. In this
subsection we take a different point of view by emphasizing how port-Hamiltonian
systems directly arise from port-based network models of physical systems.

Q

C

ϕ1 ϕ2

V

L1 L2

Figure 1. Controlled LC-circuit.
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In network models of complex physical systems the overall system is regarded
as the interconnection of energy-storing elements via basic interconnection (balance)
laws such as Newton’s third law or Kirchhoff’s laws, as well as power-conserving ele-
ments like transformers, kinematic pairs and ideal constraints, together with energy-
dissipating elements [3], [14], [13]. The basic point of departure for the theory of
port-Hamiltonian systems is to formalize the basic interconnection laws together with
the power-conserving elements by a geometric structure, and to define the Hamiltonian
as the total energy stored in the system. This is already illustrated by the following
simple example.

Example 2.3 (LCTG circuits). Consider a controlled LC-circuit (see Figure 1) con-
sisting of two inductors with magnetic energies H1(ϕ1), H2(ϕ2) (ϕ1 and ϕ2 being
the magnetic flux linkages), and a capacitor with electric energy H3(Q) (Q being
the charge). If the elements are linear then H1(ϕ1) = 1

2L1
ϕ2

1 , H2(ϕ2) = 1
2L2

ϕ2
2 and

H3(Q) = 1
2C

Q2. Furthermore let V = u denote a voltage source. Using Kirchhoff’s
laws one obtains the dynamical equations

⎡
⎣Q̇

ϕ̇1
ϕ̇2

⎤
⎦ =

⎡
⎣ 0 1 −1

−1 0 0
1 0 0

⎤
⎦

︸ ︷︷ ︸
J

⎡
⎢⎢⎣

∂H
∂Q

∂H
∂ϕ1
∂H
∂ϕ2

⎤
⎥⎥⎦+

⎡
⎣0

1
0

⎤
⎦ u,

y = ∂H

∂ϕ1
(= current through voltage source)

(10)

with H(Q, ϕ1, ϕ2) := H1(ϕ1) + H2(ϕ2) + H3(Q) the total energy. Clearly (by
Tellegen’s theorem) the matrix J is skew-symmetric.

In this way every LC-circuit with independent elements can be modelled as a port-
Hamiltonian system. Similarly any LCTG-circuit with independent elements can be
modelled as a port-Hamiltonian system, with J now being determined by Kirchhoff’s
laws and the constitutive relations of the transformers T and gyrators G.

2.3. Dirac structures and implicit port-Hamiltonian systems. From a general
modeling point of view physical systems are, at least in first instance, often described
as DAE’s, that is, a mixed set of differential and algebraic equations. This stems
from the fact that in network modeling the system under consideration is regarded as
obtained from interconnecting simpler sub-systems. These interconnections usually
give rise to algebraic constraints between the state space variables of the sub-systems;
thus leading to implicit systems. Therefore it is important to extend the framework
of port-Hamiltonian systems to the context of implicit systems; that is, systems with
algebraic constraints.

2.3.1. Dirac structures. In order to give the definition of an implicit port-Hamil-
tonian system we introduce the notion of a Dirac structure, formalizing the concept of
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a power-conserving interconnection, and generalizing the notion of a structure matrix
J (x) as encountered before.

Let F be an �-dimensional linear space, and denote its dual (the space of linear
functions on F ) by F ∗. The product space F × F ∗ is considered to be the space of
power variables, with power defined by

P = 〈f ∗|f 〉, (f, f ∗) ∈ F × F ∗, (11)

where 〈f ∗|f 〉 denotes the duality product. Often we call F the space of flows f , and
F ∗ the space of efforts e, with the power of an element (f, e) ∈ F × F ∗ denoted as
〈e|f 〉.
Example 2.4. Let F be the space of generalized velocities, and F ∗ be the space of
generalized forces, then 〈e|f 〉 is mechanical power. Similarly, let F be the space of
currents, and F ∗ be the space of voltages, then 〈e|f 〉 is electrical power.

There exists on F × F ∗ the canonically defined symmetric bilinear form

〈(f1, e1), (f2, e2)〉F ×F ∗ := 〈e1|f2〉 + 〈e2|f1〉 (12)

for fi ∈ F , ei ∈ F ∗, i = 1, 2.

Definition 2.5 ([6], [8], [7]). A constant Dirac structure on F is a linear subspace
D ⊂ F × F ∗ such that

D = D⊥ (13)

where ⊥ denotes the orthogonal complement with respect to the bilinear form 〈 , 〉F ×F ∗ .

It immediately follows that the dimension of any Dirac structure D on an �-dimen-
sional linear space is equal to �. Furthermore, let (f, e) ∈ D = D⊥. Then by (12)

0 = 〈(f, e), (f, e)〉F ×F ∗ = 2〈e | f 〉. (14)

Thus for all (f, e) ∈ D we obtain 〈e | f 〉 = 0. Hence a Dirac structure D on F
defines a power-conserving relation between the power variables (f, e) ∈ F × F ∗,
which moreover has maximal dimension.

Remark 2.6. For many systems, especially those with 3-D mechanical components,
the Dirac structure is actually modulated by the energy or geometric variables. Fur-
thermore, the state space X is a manifold and the flows fS = −ẋ corresponding to
energy-storage are elements of the tangent space TxX at the state x ∈ X, while the
efforts eS are elements of the co-tangent space T ∗

x X.
Modulated Dirac structures often arise as a result of kinematic constraints. In

many cases, these constraints will be configuration dependent, causing the Dirac
structure to be modulated by the configuration variables, cf. Section 2.2.
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In general, a port-Hamiltonian system can be represented as in Figure 2. The port
variables entering the Dirac structure D have been split in different parts. First, there
are two internal ports. One, denoted by S, is corresponding to energy-storage and
the other one, denoted by R, is corresponding to internal energy-dissipation (resistive
elements). Second, two external ports are distinguished. The external port denoted
by C is the port that is accessible for controller action. Also the presence of sources
may be included in this port. Finally, the external port denoted by � is the interaction
port, defining the interaction of the system with (the rest of) its environment.

S

R

C

�

D

Figure 2. Port-Hamiltonian system.

2.3.2. Energy storage port. The port variables associated with the internal storage
port will be denoted by (fS, eS). They are interconnected to the energy storage of the
system which is defined by a finite-dimensional state space manifold X with coordi-
nates x, together with a Hamiltonian function H : X → R denoting the energy. The
flow variables of the energy storage are given by the rate ẋ of the energy variables x.
Furthermore, the effort variables of the energy storage are given by the co-energy
variables ∂H

∂x
(x), resulting in the energy balance

d

dt
H =

〈
∂H

∂x
(x)

∣∣ ẋ〉 = ∂T H

∂x
(x)ẋ. (15)

(Here we adopt the convention that ∂H
∂x

(x) denotes the column vector of partial deriva-
tives of H .)

The interconnection of the energy storing elements to the storage port of the Dirac
structure is accomplished by setting

fS = −ẋ,

eS = ∂H

∂x
(x).

(16)



8 Arjan van der Schaft

Hence the energy balance (15) can be also written as

d

dt
H = ∂T H

∂x
(x)ẋ = −eT

S fS. (17)

2.3.3. Resistive port. The second internal port corresponds to internal energy dissi-
pation (due to friction, resistance, etc.), and its port variables are denoted by (fR, eR).
These port variables are terminated on a static resistive relation R. In general, a static
resistive relation will be of the form

R(fR, eR) = 0, (18)

with the property that for all (fR, eR) satisfying (18)

〈eR | fR〉 ≤ 0. (19)

In many cases we may restrict ourselves to linear resistive relations. This means that
the resistive port variables (fR, eR) satisfy linear relations of the form

Rf fR + ReeR = 0. (20)

The inequality (19) corresponds to the square matrices Rf and Re satisfying the
properties of symmetry and semi-positive definiteness

Rf RT
e = ReR

T
f ≥ 0, (21)

together with the dimensionality condition rank[Rf |Re] = dim fR.

Without the presence of additional external ports, the Dirac structure of the port-
Hamiltonian system satisfies the power-balance eT

S fS + eT
RfR = 0 which leads to

d

dt
H = −eT

S fS = eT
RfR ≤ 0. (22)

An important special case of resistive relations between fR and eR occurs when the
resistive relations can be expressed as an input-output mapping fR = −F(eR), where
the resistive characteristic F : R

mr → R
mr satisfies

eT
RF (eR) ≥ 0, eR ∈ R

mr . (23)

For linear resistive elements this specializes to fR = −R̃eR , for some positive semi-
definite symmetric matric R̃ = R̃T ≥ 0.

2.3.4. External ports. Now, let us consider in more detail the external ports to
the system. We distinguish between two types of external ports. One is the control
port C, with port variables (fC, eC), which are the port variables which are accessible
for controller action. Other type of external port is the interaction port � , which
denotes the interaction of the port-Hamiltonian system with its environment. The
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port variables corresponding to the interaction port are denoted by (fI , eI ). By taking
both the external ports into account the power-balance extends to

eT
S fS + eT

RfR + eT
CfC + eT

I fI = 0 (24)

whereby (22) extends to

d

dt
H = eT

RfR + eT
CfC + eT

I fI . (25)

2.3.5. Port-Hamiltonian dynamics. The port-Hamiltonian system with state space
X, Hamiltonian H corresponding to the energy storage port S, resistive port R,
control port C, interconnection port � , and total Dirac structure D will be succinctly
denoted by � = (X, H, R, C, � , D). The dynamics of the port-Hamiltonian system
is specified by considering the constraints on the various port variables imposed by
the Dirac structure, that is

(fS, eS, fR, eR, fC, eC, fI , eI ) ∈ D,

and to substitute in these relations the equalities fS = −ẋ, eS = ∂H
∂x

(x). This leads
to the implicitly defined dynamics(

− ẋ(t),
∂H

∂x
(x(t)), fR(t), eR(t), fC, (t), eC(t), fI (t), eI (t)

)
∈ D (26)

with fR(t), eR(t) satisfying for all t the resistive relation (18):

R(fR, eR) = 0. (27)

In many cases of interest the dynamics (26) will constrain the allowed states x, de-
pending on the values of the external port variables (fC, eC) and (fI , eI ). Thus in an
equational representation port-Hamiltonian systems generally will consist of a mixed
set of differential and algebraic equations (DAEs).

Example 2.7 (General LC- circuits). Consider an LC-circuit with general network
topology. Kirchhoff’s current and voltage laws take the general form

AL
T IL + AC

T IC + AP
T IP = 0,

VL = ALλ, VC = ACλ, VP = AP λ

for some matrices AL, AC , AS . Here IL, IC , IP denote the currents, respectively
through the inductors, capacitors and external ports. Likewise, VL, VC , VP denote
the voltages over the inductors, capacitors and external ports. Kirchhoff’s current and
voltage laws define a Dirac structure between the flows and efforts:

f = (IC, VL, IP ) = (−Q̇, −φ̇, IP ),

e = (VC, IL, VP ) =
(

∂H

∂Q
,
∂H

∂φ
, VP

)
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with Hamiltonian H(φ, Q) the total energy. This leads the to port-Hamiltonian system
in implicit form

−φ̇ = ALλ,

∂H

∂Q
= ACλ,

VP = AP λ,

0 = AL
T ∂H

∂φ
− AC

T Q̇ + AP
T IP .

Example 2.8 (Electro-mechanical system). Consider the dynamics of an iron ball in
the magnetic field of a controlled inductor: The port-Hamiltonian description of this

g

R

V

I

φ

m

q

Figure 3. Magnetically levitated ball.

system (with q the height of the ball, p the vertical momentum, and ϕ the magnetic
flux of the inductor) is given as

⎡
⎣q̇

ṗ

ϕ̇

⎤
⎦ =

⎡
⎣ 0 1 0

−1 0 0
0 0 − 1

R

⎤
⎦
⎡
⎢⎢⎣

∂H
∂q

∂H
∂p

∂H
∂ϕ

⎤
⎥⎥⎦+

⎡
⎣0

0
1

⎤
⎦V,

I = ∂H

∂ϕ
.

(28)

This is a typical example of a system where the coupling between two different
physical domains (mechanical and magnetic) takes place via the Hamiltonian

H(q, p, ϕ) = mgq + p2

2m
+ ϕ2

2k1(1 − q
k2

)
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where the last term depends both on a magnetic variable (in this case ϕ) and a me-
chanical variable (in this case the height q).

2.4. Input-state-output port-Hamiltonian systems. An important special case of
port-Hamiltonian systems is the class of input-state-output port-Hamiltonian systems,
where there are no algebraic constraints on the state space variables, and the flow and
effort variables of the resistive, control and interaction port are split into conjugated
input–output pairs. Input–state–output port-Hamiltonian systems without interaction
port are of the form

ẋ = [J (x) − R(x)]∂H

∂x
(x) + g(x)u,

y = gT (x)
∂H

∂x
(x)

(29)

where u, y are the input–output pairs corresponding to the control port C. Here the
matrix J (x) is skew-symmetric, while the matrix R(x) = RT (x) ≥ 0 specifies the
resistive structure, and is given as R(x) = gT

R(x)R̃gR(x) for some linear resistive
relation fR = −R̃eR, R̃ = R̃T ≥ 0, with gR representing the input matrix corre-
sponding to the resistive port. The underlying Dirac structure of the system is then
given by the graph of the skew-symmetric linear map⎛

⎝−J (x) −gR(x) −g(x)

gT
R(x) 0 0

gT (x) 0 0

⎞
⎠ . (30)

3. Control by interconnection of port-Hamiltonian systems

The basic property of port-Hamiltonian systems is that the power-conserving inter-
connection of any number of port-Hamiltonian systems is again a port-Hamiltonian
system.

To be explicit, consider two port-Hamiltonian systems �A and �B with Dirac
structures DA and DB and Hamiltonians HA and HB , defined on state spaces XA, re-
spectively XB . For convenience, split the ports of the Dirac structures DA and DB into
the internal energy storage ports and all remaining external ports whose port-variables
are denoted respectively by fA, eA and fB , eB . Now, consider any interconnection
Dirac structure DI involving the port-variables fA, eA, fB, eB possibly together with
additional port-variables fI , eI . Then the interconnection of the systems �A and �B

via DI is again a port-Hamiltonian system with respect to the composed Dirac struc-
ture DA � DI � DB , involving as port-variables the internal storage port-variables of
DA and DB together with the additional port-variables FI , eI . For details we refer
to [5], [34], [30].
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Furthermore, the state space of the interconnected port-Hamiltonian system is the
product of the two state spaces XA × XB , while its Hamiltonian is simply the sum
HA + HB of the two Hamiltonians.

This basic statement naturally extends to the interconnection of any number of
port-Hamiltonian systems via an interconnection Dirac structure.

Control by port-interconnection is based on designing a controller system which
is interconnected to the control port with port-variables (fC, eC). In principle this
implies that we only consider collocated control, where the controller will only use
the information about the plant port-Hamiltonian system that is contained in the con-
jugated pairs (fC, eC) of port variables of the control port, without using additional in-
formation about the plant (e.g. corresponding to observation on other parts of the plant
system). In the second place, we will restrict attention to controller systems which
are themselves also port-Hamiltonian systems. There are two main reasons for this.
One is that by doing so the closed-loop system is again a port-Hamiltonian system,
allowing to easily ensure some desired properties. Furthermore, it will turn out that
the port-Hamiltonian framework suggests useful ways to construct port-Hamiltonian
controller systems. Second reason is that port-Hamiltonian controller systems al-
low in principle for a physical system realization (thus linking to passive control and
systems design) and physical interpretation of the controller action.

Since we do not know the environment (or only have very limited information about
it), but on the other hand, the system will interact with this unknown environment, the
task of the controller is often two-fold: 1) to achieve a desired control goal (e.g. set-
point regulation or tracking) if the interaction with the environment is marginal or can
be compensated, 2) to make sure that the controlled system has a desired interaction
behavior with its environment. It is fair to say that up to now the development of the
theory of control of port-Hamiltonian systems has mostly concentrated on the second
aspect (which at the same time, is often underdeveloped in other control theories).

Most successful approaches to deal with the second aspect of the control goal are
those based on the concept of “passivity”, such as dissipativity theory [38], impedance
control [13] and Intrinsically Passive Control (IPC) [36]. In fact, the port-Hamiltonian
control theory can be regarded as an enhancement to the theory of passivity, making
a much closer link with complex physical systems modeling at one hand and with the
theory of dynamical systems (in particular, Hamiltonian dynamics) at the other hand.

As said above, we will throughout consider controller systems which are again
port-Hamiltonian systems. We will use the same symbols as above for the internal and
external ports and port-variables of the controller port-Hamiltonian system, with an
added overbar¯or a superscript c in order to distinguish it from the plant system. (The
interaction port of the controller system may be thought of as an extra possibility for
additional controller action (outer-loop control).) In order to further distinguish the
plant system and the controller we denote the state space of the plant system by Xp

with coordinates xp, the Dirac structure by Dp and its Hamiltonian by Hp, while we
will denote the state space manifold of the controller system byXc with coordinatesxc,
its Dirac structure by Dc and its Hamiltonian by Hc : Xc → R. The interconnection
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of the plant port-Hamiltonian system with the controller port-Hamiltonian system is
obtained by equalizing the port variables at the control port by

fC = −f̄C,

eC = ēC

(31)

where f̄C , ēC denote the control port variables of the controller system. Here, the
minus sign is inserted to have a uniform notion of direction of power flow. Clearly,
this ’synchronizing’ interconnection is power-conserving, that is eT

CfC + ēT
Cf̄C = 0.

Remark 3.1. A sometimes useful alternative is the gyrating power-conserving inter-
connection

fC = −ēC,

eC = f̄C.
(32)

In fact, the standard feedback interconnection can be regarded to be of this type.

For both interconnection constraints it directly follows from the theory of com-
position of Dirac structures that the interconnected (closed-loop) system is again a
port-Hamiltonian system with Dirac structure determined by the Dirac structures of
the plant PH system and the controller PH system.

The resulting interconnected PH system has state space Xp × Xc, Hamiltonian
Hp + Hc, resistive ports (fR, eR, f̄R, ēR) and interaction ports (fI , eI , f̄I , ēI ), satis-
fying the power-balance

d

dt
(Hp + Hc) = eT

RfR + ēT
Rf̄R + eT

I fI + ēT
I f̄I ≤ eT

I fI + ēT
I f̄I (33)

since both eT
RfR ≤ 0 and ēT

Rf̄R ≤ 0. Hence we immediately recover the state
space formulation of the passivity theorem, see e.g. [31], if Hp and Hc are both non-
negative, implying that the plant and the controller system are passive (with respect
to their controller and interaction ports and storage functions Hp and Hc), then also
the closed -loop system is passive (with respect to the interaction ports and storage
function Hp + Hc.)

Furthermore, due to the Hamiltonian structure, we can go beyond the passivity
theorem, and we can derive conditions which ensure that we can passify and/or sta-
bilize plant port-Hamiltonian systems for which the Hamiltonian Hp does not have a
minimum at the desired equilibrium.

3.1. Stabilization by Casimir generation. What does the power-balance (33)mean
for the stability properties of the closed-loop system, and how can we design the
controller port-Hamiltonian system in such a way that the closed-loop system has
desired stability properties? Let us first consider the stability of an arbitrary port-
Hamiltonian system � = (X, H, R, C, � , D) without control or interaction ports,
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that is, an autonomous port-Hamiltonian system � = (X, H, R, D). Clearly, the
power-balance (33) reduces to

d

dt
H = eT

RfR ≤ 0. (34)

Hence we immediately infer by standard Lyapunov theory that if x∗ is a minimum
of the Hamiltonian H then it will be a stable equilibrium of the autonomous port-
Hamiltonian system � = (X, H, R, D), which is actually asymptotically stable if
the dissipation term eT

RfR is negative definite outside x∗, or alternatively if some sort
of detectability condition is satisfied, guaranteeing asymptotic stability by the use of
LaSalle’s Invariance principle (see for details e.g. [31]).

However, what can we say if x∗ is not a minimum of H , and thus we cannot
directly use H as a Lyapunov function?

A well-known method in Hamiltonian systems, sometimes called the Energy-
Casimir method, is to use in the Lyapunov analysis next to the Hamiltonian other
conserved quantities (dynamical invariants) which may be present in the system.
Indeed, if we may find other conserved quantities then candidate Lyapunov functions
can be sought within the class of combinations of the Hamiltonian H and those
conserved quantities. In particular, if we can find a conserved quantity C : X → R

such that V := H + C has a minimum at the desired equilibrium x∗ then we can still
infer stability or asymptotic stability by replacing (34) by

d

dt
V = eT

RfR ≤ 0 (35)

and thus using V as a Lyapunov function.
For the application of the Energy-Casimir method one may distinguish between

two main cases. First situation occurs if the desired equilibrium x∗ is not a stationary
point of H , and one looks for a conserved quantity C such that H +C has a minimum
at x∗. This for example happens in the case that the desired set-point x∗ is not an equi-
librium of the uncontrolled system, but only a controlled equilibrium of the system.
Second situation occurs when x∗ is a stationary point of H , but not a minimum.

Functions that are conserved quantities of the system for every Hamiltonian are
called Casimir functions or simply Casimirs. Casimirs are completely characterized
by the Dirac structure of the port-Hamiltonian system. Indeed, a function C : X → R

is a Casimir function of the autonomous port-Hamiltonian system (without energy
dissipation) � = (X, H, D) if and only if the gradient vector e = ∂T C

∂x
satisfies

eT fS = 0 for all fS for which there exists eS such that (fS, eS) ∈ D . (36)

Indeed, (36) is equivalent to

d

dt
C = ∂T C

∂x
(x(t))ẋ(t) = ∂T C

∂x
(x(t))fS = eT fS = 0 (37)



Port-Hamiltonian systems: an introductory survey 15

for every port-Hamiltonian system (X, H, D) with the same Dirac structure D . By
the generalized skew-symmetry of the Dirac structure (36) is equivalent to the re-
quirement that e = ∂T C

∂x
satisfies

(0, e) ∈ D .

Similarly, we define a Casimir function for a port-Hamiltonian system with dissipation
� = (X, H, R, D) to be any function C : X → R satisfying

(0, e, 0, 0) ∈ D . (38)

Indeed, this will imply that

d

dt
C = ∂T C

∂x
(x(t))ẋ(t) = ∂T C

∂x
(x(t))fp = eT fp = 0 (39)

for every port-Hamiltonian system (X, H, R, D) with the same Dirac structure D .
(In fact by definiteness of the resistive structures the satisfaction of (39) for a particular
resistive structure R implies the satisfaction for all resistive structures R.)

Now let us come back to the design of a controller port-Hamiltonian system such
that the closed-loop system has desired stability properties. Suppose we want to stabi-
lize the plant port-Hamiltonian system (Xp, Hp, R, C, Dp) around a desired equilib-
rium x∗

p . We know that for every controller port-Hamiltonian system the closed-loop
system satisfies

d

dt
(Hp + Hc) = eT

RfR + ēT
Rf̄R ≤ 0. (40)

What if x∗ is not a minimum for Hp? A possible strategy is to generate Casimir func-
tionsC(xp, xc) for the closed-loop system by choosing the controller port-Hamiltonian
system in an appropriate way. Thereby we generate candidate Lyapunov functions
for the closed-loop system of the form

V (xp, xc) := Hp(xp) + Hc(xc) + C(xp, xc)

where the controller Hamiltonian function Hc : Xc → R still has to be designed. The
goal is thus to construct a function V as above in such a way that V has a minimum
at (x∗

p, x∗
c ) where x∗

c still remains to be chosen. This strategy thus is based on finding
all the achievable closed-loop Casimirs. Furthermore, since the closed-loop Casimirs
are based on the closed-loop Dirac structures, this reduces to finding all the achievable
closed-loop Dirac structures D � D̄ .

Another way to interpret the generation of Casimirs for the closed-loop system is to
look at the level sets of the Casimirs as invariant submanifolds of the combined plant
and controller state space Xp × Xc. Restricted to every such invariant submanifold
(part of) the controller state can be expressed as a function of the plant state, whence
the closed-loop Hamiltonian restricted to such an invariant manifold can be seen as a
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shaped version of the plant Hamiltonian. To be explicit (see e.g. [31], [24], [25] for
details) suppose that we have found Casimirs of the form

xci − Fi(xp), i = 1, . . . , np

where np is the dimension of the controller state space, then on every invariant man-
ifold xci − Fi(xp) = αi , i = 1, . . . , np, where α = (α1, . . . , αnp) is a vector of
constants depending on the initial plant and controller state, the closed-loop Hamil-
tonian can be written as

Hs(xp) := Hp(xp) + Hc(F (xp) + α),

where, as before, the controller Hamiltonian Hc still can be assigned. This can be
regarded as shaping the original plant Hamiltonian Hp to a new Hamiltonian Hs .

3.2. Port Control. In broad terms, the Port Control problem is to design, given
the plant port-Hamiltonian system, a controller port-Hamiltonian system such that
the behavior at the interaction port of the plant port-Hamiltonian system is a desired
one, or close to a desired one. This means that by adding the controller system we
seek to shape the external behavior at the interaction port of the plant system. If the
desired external behavior at this interaction port is given in input–output form as a
desired (dynamic) impedance, then this amounts to the Impedance Control problem
as introduced and studied by Hogan and co-workers [13]; see also [36] for subsequent
developments.

The Port Control problem, as stated in this generality, immediately leads to two
fundamental questions: 1). Given the plant PH system, and the controller PH system
to be arbitrarily designed, what are the achievable behaviors of the closed-loop system
at the interaction port of the plant? 2). If the desired behavior at the interaction port
of the plant is not achievable, then what is the closest achievable behavior? Of course,
the second question leaves much room for interpretation, since there is no obvious
interpretation of what we mean by ’closest behavior’. Also the first question in its full
generality is not easy to answer, and we shall only address an important subproblem.

An obvious observation is that the desired behavior, in order to be achievable,
needs to be the port behavior of a PH system. This leads already to the problem of
characterizing those external behaviors which are port behaviors of port-Hamiltonian
systems. Secondly, the Port Control problem can be split into a number of subprob-
lems. Indeed, we know that the closed-loop system arising from interconnection of
the plant PH system with the controller PH system is specified by a Hamiltonian
which is just the sum of the plant Hamiltonian and the controller Hamiltonian, and
a resistive structure which is the “product” of the resistive structure of the plant and
of the controller system, together with a Dirac structure which is the composition of
the plant Dirac structure and the controller Dirac structure. Therefore an important
subproblem is again to characterize the achievable closed-loop Dirac structures. On
the other hand, a fundamental problem in addressing the Port Control problem in
general theoretical terms is the lack of a systematic way to specify ’desired behavior’.
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The problem of Port Control is to determine the controller system in such a way
that the port behavior in the port variables fI , eI is a desired one. In this particular
(simple and linear) example the desired behavior can be quantified e.g. in terms of a
desired stiffness and damping of the closed-loop system, which is easily expressed
in terms of the closed-loop transfer function from fI to eI . Of course, on top of
the requirements on the closed-loop transfer function we would also require internal
stability of the closed-loop system. For an appealing example of port control of
port-Hamiltonian systems within a context of hydraulic systems we refer to [15].

3.3. Energy Control. Consider two port-Hamiltonian systems �i (without internal
dissipation) in input–state–output form

ẋi = Ji(xi)
∂Hi

∂xi

+ gi(xi)ui,

yi = gT
i (xi)

∂Hi

∂xi

, i = 1, 2,

(41)

both satisfying the power-balance d
dt

Hi = yT
i ui . Suppose now that we want to

transfer the energy from the port-Hamiltonian system �1 to the port-Hamiltonian
system �2, while keeping the total energy H1 + H2 constant. This can be done by
using the following output feedback[

u1
u2

]
=
[

0 −y1y
T
2

y2y
T
1 0

] [
y1
y2

]
. (42)

Since the matrix in (42) is skew-symmetric it immediately follows that the closed-loop
system composed of systems �1 and �2 linked by the power-conserving feedback is
energy-preserving, that is d

dt
(H1 + H2) = 0. However, if we consider the individual

energies then we notice that

d

dt
H1 = −yT

1 y1y
T
2 y2 = −‖y1‖2‖y2‖2 ≤ 0 (43)

implying that H1 is decreasing as long as ‖y1‖ and ‖y2‖ are different from 0. Con-
versely, as expected since the total energy is constant,

d

dt
H2 = yT

2 y2y
T
1 y1 = ‖y2‖2‖y1‖2 ≥ 0 (44)

implying that H2 is increasing at the same rate. In particular, if H1 has a minimum at
the zero equilibrium, and �1 is zero-state observable, then all the energy H1 of �1 will
be transferred to �2, provided that ‖y2‖ is not identically zero (which again can be
guaranteed by assuming that H2 has a minimum at the zero equilibrium, and that �2
is zero-state observable).

If there is internal energy dissipation, then this energy transfer mechanism still
works. However, the fact that H2 grows or not will depend on the balance between the
energy delivered by �1 to �2 and the internal loss of energy in �2 due to dissipation.
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We conclude that this particular scheme of power-conserving energy transfer is
accomplished by a skew-symmetric output feedback, which is modulated by the
values of the output vectors of both systems. Of course this raises, among others, the
question of the efficiency of the proposed energy-transfer scheme, and the need for
a systematic quest of similar power-conserving energy-transfer schemes. We refer
to [9] for a similar but different energy-transfer scheme directly motivated by the
structure of the example (control of a snakeboard).

3.4. Achievable closed-loop Dirac structures. In all the control problems discussed
above the basic question comes up what are the achievable closed-loop Dirac structures
based on a given plant Dirac structure and a controller Dirac structure, which still is
to be determined.

Theorem 3.2 ([5]). Given any plant Dirac structure Dp, a certain interconnected
D = Dp � Dc can be achieved by a proper choice of the controller Dirac structure
Dc if and only if the following two equivalent conditions are satisfied:

D0
p ⊂ D0,

Dπ ⊂ Dπ
p

where

D0
p := {f1, e1) | (f1, e1, 0, 0) ∈ Dp},

Dπ
p := {(f1, e1) | there exists (f P

2 , eP
2 ) with (f1, e1, f

P
2 , eP

2 ) ∈ Dp},
D0 := {(f1, e1) | (f1, e1, 0, 0) ∈ D},
Dπ := {(f1, e1) | there exists (f3, e3) with (f1, e1, f3, e3) ∈ D}.

An important application of the above theorem concerns the characterization of
Casimir functions which can be achieved by interconnecting a given plant port-
Hamiltonian system with a controller port-Hamiltonian system.

4. Distributed-parameter port-Hamiltonian systems

The treatment of infinite-dimensional Hamiltonian systems in the literature is mostly
confined to systems with boundary conditions such that the energy exchange through
the boundary is zero. On the other hand, in many applications the interaction with
the environment (e.g. actuation or measurement) will actually take place through
the boundary of the system. In [35] a framework has been developed to repre-
sent classes of physical distributed-parameter systems with boundary energy flow as
infinite-dimensional port-Hamiltonian systems. It turns out that in order to allow the
inclusion of boundary variables in distributed-parameter systems the concept of (an
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infinite-dimensional) Dirac structure provides again the right type of generalization
with respect to the existing framework [23] using Poisson structures.

As we will discuss in the next three examples, the port-Hamiltonian formulation
of distributed-parameter systems is closely related to the general framework for de-
scribing basic distributed-parameter systems as systems of conservation laws, see e.g.
[11], [37].

Example 4.1 (Inviscid Burger’s equation). The viscous Burger’s equation is a scalar
parabolic equation defined on a one-dimensional spatial domain (interval) Z =
[a, b] ⊂ R, with the state variable α(t, z) ∈ R, z ∈ Z, t ∈ I , where I is an in-
terval of R, satisfying the partial differential equation

∂α

∂t
+ α

∂α

∂z
− ν

∂2α

∂z2 = 0. (45)

The inviscid (ν = 0) Burger’s equations may be alternatively expressed as

∂α

∂t
+ ∂

∂z
β = 0 (46)

where the state variable α(t, z) is called the conserved quantity and the function
β := α2

2 the flux variable. Eq. (46) is called a conservation law, since by integration
one obtains the balance equation

d

dt

∫ b

a

α dz = β(a) − β(b). (47)

Furthermore, according to the framework of Irreversible Thermodynamics [27], one
may express the flux β as a function of the generating force which is the variational
derivative of some functional H(α) of the state variable. The variational derivative
δH
δα

of a functional H(α) is uniquely defined by the requirement

H(α + εη) = H(α) + ε

∫ b

a

δH

δα
η dz + O(ε2) (48)

for any ε ∈ R and any smooth function η(z, t) such that α + εη satisfies the same
boundary conditions as α [23]. For the inviscid Burger’s equation one has β = δH

δα
,

where

H(α) =
∫ b

a

α3

6
dz. (49)

Hence the inviscid Burger’s equation may be also expressed as

∂α

∂t
= − ∂

∂z

δH

δα
. (50)

This defines an infinite-dimensional Hamiltonian system in the sense of [23] with
respect to the skew-symmetric operator ∂

∂z
that is defined on the functions with support

contained in the interior of the interval Z.
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From this formulation one derives that the Hamiltonian H(α) is another conserved
quantity. Indeed, by integration by parts

d

dt
H =

∫ b

a

δH

δα
· − ∂

∂z

δH

δα
dz = 1

2

(
β2(a) − β2(b)

)
. (51)

We note that the right-hand side is a function of the flux variables evaluated at the
boundary of the spatial domain Z.

The second example consists of a system of two conservations laws, corresponding
to the case of two physical domains in interaction.

Example 4.2 (The p-system, cf. [11], [37]). The p-system is a model for e.g. a
one-dimensional gas dynamics. Again, the spatial variable z belongs to an interval
Z ⊂ R, while the dependent variables are the specific volume v(t, z) ∈ R

+, the
velocity u(t, z) and the pressure functional p(v) (which for instance in the case of
an ideal gas with constant entropy is given by p(v) = Av−γ where γ ≥ 1). The
p-system is then defined by the following system of partial differential equations

∂v

∂t
− ∂u

∂z
= 0,

∂u

∂t
+ ∂ p(v)

∂z
= 0

(52)

representing respectively conservation of mass and of momentum. By defining the
state vector as α(t, z) = (v, u)T , and the vector-valued flux β(t, z) = (−u, p(v))T

the p-system is rewritten as
∂α

∂t
+ ∂

∂z
β = 0. (53)

Again, according to the framework of Irreversible Thermodynamics, the flux vec-
tor may be written as function of the variational derivatives of some functional. In-
deed, consider the energy functional H(α) = ∫ b

a
H(v, u)dz where the energy density

H(v, u) is given as the sum of the internal energy and the kinetic energy densities

H(v, u) = U(v) + u2

2
(54)

with −U(v) a primitive function of the pressure. (Note that for simplicity the mass
density has been set equal to 1, and hence no difference is made between the velocity
and the momentum.) The flux vector β may be expressed in terms of the variational
derivatives of H as

β =
(

0 −1
−1 0

)( δH
δv

δH
δu

)
. (55)

The anti-diagonal matrix represents the canonical coupling between two physical do-
mains: the kinetic and the potential (internal) domain. Thus the variational derivative
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of the total energy with respect to the state variable of one domain generates the flux
variable for the other domain. Combining eqns. (53) and (55), the p-system may thus
be written as the Hamiltonian system(

∂α1
∂t

∂α2
∂t

)
=
(

0 − ∂
∂z

− ∂
∂z

0

)(
δH
δα1
δH
δα2

)
. (56)

Using again integration by parts, one may derive the following energy balance equa-
tion:

d

dt
H = β1(a)β2(a) − β1(b)β2(b). (57)

Notice again that the right-hand side of this power-balance equation is a quadratic
function of the fluxes at the boundary of the spatial domain.

The last example is the vibrating string. It is again a system of two conservation
laws representing the canonical interdomain coupling between the kinetic energy and
the elastic potential energy. However in this example the classical choice of the
state variables leads to express the total energy as a function of some of the spatial
derivatives of the state variables.

Example 4.3 (Vibrating string). Consider an elastic string subject to traction forces at
its ends, with spatial variable z ∈ Z = [a, b] ⊂ R. Denote by u(t, z) the displacement
of the string and the velocity by v(t, z) = ∂u

∂t
. Using the vector of state variables

x(t, z) = (u, v)T , the dynamics of the vibrating string is described by the system of
partial differential equations

∂x

∂t
=
(

v
1
μ

∂
∂z

(
T ∂u

∂z

)) (58)

where the first equation is simply the definition of the velocity and the second one is
Newton’s second law. Here T denotes the elasticity modulus, and μ the mass density.
The total energy is H(x) = U(u) + K(v), where the elastic potential energy U is a
function of the strain ∂u

∂z
(t, z)

U(u) =
∫ b

a

1

2
T

(
∂u

∂z

)2

dz (59)

and the kinetic energy K depends on the velocity v(t, z) = ∂u
∂t

as

K(v) =
∫ b

a

1

2
μv(t, z)2 dz. (60)

Thus the total system (58) may be expressed as

∂x

∂t
=
(

0 1
μ

− 1
μ

0

)(
δH
δu

δH
δv

)
(61)
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where δH
δu

= δU
δu

= − ∂
∂z

(
T ∂u

∂z

)
is the elastic force and δH

δv
= δK

δv
= μv is the

momentum.
In this formulation, the system is not anymore expressed as a system of conserva-

tion laws since the time-derivative of the state variables is a function of the variational
derivatives of the energy directly, and not the spatial derivative of a function of the
variational derivatives as before. Instead of being a simplification, this reveals a draw-
back for the case of non-zero energy flow through the boundary of the spatial domain.
Indeed, in this case the variational derivative has to be completed by a boundary
term since the Hamiltonian functional depends on the spatial derivatives of the state.
For example, in the computation of the variational derivative of the elastic potential
energy U one obtains by integration by parts that U(u + εη) − U(u) equals

−ε

∫ b

a

∂

∂z

(
T

∂u

∂z

)
η dz + ε

[
η

(
T

∂u

∂z

)]b

a

+ O(ε2) (62)

and the second term in this expression constitutes an extra boundary term.
Alternatively we now formulate the vibrating string as a system of two conservation

laws. Take as alternative vector of state variables α(t, z) = (ε, p)T , where ε denotes
the strain α1 = ε = ∂u

∂z
and p denotes the momentum α2 = p = μv. Recall that in

these variables the total energy is written as

H0 =
∫ b

a

1

2

(
T α2

1 + 1

μ
α2

2

)
dz (63)

and directly depends on the state variables and not on their spatial derivatives. Fur-
thermore, one defines the flux variables to be the stress β1 = δH0

δα1
= T α1 and the

velocity β2 = δH0
δα1

= α2
μ

. In matrix notation, the flux vector β is thus expressed as a

function of the variational derivatives δH0
δα

by

β =
(

0 −1
−1 0

)
δH0

δα
. (64)

Hence the vibrating string may be alternatively expressed by the system of two con-
servation laws

∂α

∂t
=
(

0 ∂
∂z

∂
∂z

0

)
δH0

δα
(65)

satisfying the power balance equation (57).

4.1. Systems of two conservation laws in interaction. Let us now consider the
general class of distributed-parameter systems consisting of two conservation laws
with the canonical coupling as in the above examples of the p-system and the vibrating
string. Let the spatial domain Z ⊂ R

n be an n-dimensional smooth manifold with
smooth (n−1)-dimensional boundary ∂Z. Denote by �k(Z) the vector space of (dif-
ferential) k-forms on Z (respectively by �k(∂Z) the vector space of k-forms on ∂Z).
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Denote furthermore by � = ⊕
k≥0 �k(Z) the algebra of differential forms over Z

and recall that it is endowed with an exterior product ∧ and an exterior derivation d.

Definition 4.4. A system of conservation laws is defined by a set of conserved quan-
tities αi ∈ �ki (Z), i ∈ {1, . . . , N} where N ∈ N, ki ∈ N, defining the state space
X = ⊗

i=1,...,N �ki (Z), and satisfying a set of conservation laws

∂αi

∂t
+ dβi = gi (66)

where βi ∈ �ki−1 (Z) denote the set of fluxes and gi ∈ �ki (Z) denote the set
of distributed interaction forms. In general, the fluxes βi are defined by so-called
closure equations

βi = J (αi, z) , i = 1, . . . , N (67)

leading to a closed form for the dynamics of the conserved quantities αi. The integral
form of the conservation laws yields the following balance equations

d

dt

∫
S

αi +
∫

∂S

βi =
∫

S

gi (68)

for any surface S ⊂ Z of dimension equal to the degree of αi .

Remark 4.5. A common case is that Z = R
3 and that the conserved quantities are

3-forms, that is, the balance equation is evaluated on volumes of the 3-dimensional
space. In this case () takes in vector calculus notation the familiar form

∂αi

∂t
(z, t) + divzβi = gi, i = 1, . . . , n. (69)

However, systems of conservation laws may correspond to differential forms of any
degree. Maxwell’s equations are an example where the conserved quantities are
differential forms of degree 2.

In the sequel, as in our examples sofar, we consider a particular class of sys-
tems of conservation laws where the closure equations are such that fluxes are linear
functions of the variational derivatives of the Hamiltonian functional. First recall the
general definition of the variational derivative of a functional H(α) with respect to
the differential form α ∈ �p(Z) (generalizing the definition given before).

Definition 4.6. Consider a density function H : �p(Z) × Z → �n(Z) where p ∈
{1, . . . , n}, and denote by H := ∫

Z
H ∈ R the associated functional. Then the

uniquely defined differential form δH
δα

∈ �n−p(Z) which satisfies for all �α ∈ �p(Z)

and ε ∈ R

H(α + ε�α) =
∫

Z

H (α) + ε

∫
Z

[
δH

δα
∧ �α

]
+ O

(
ε2)

is called the variational derivative of H with respect to α ∈ �p(Z).
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Definition 4.7. Systems of two conservation laws with canonical interdomain cou-
pling are systems involving a pair of conserved quantities αp ∈ �p(Z) and αq ∈
�q(Z), differential forms on the n-dimensional spatial domain Z of degree p and q re-
spectively, satisfying p+q = n+1 (’complementarity of degrees’). The closure equa-
tions generated by a Hamiltonian density function H : �p(Z)×�q(Z)×Z → �n(Z)

resulting in the Hamiltonian H := ∫
Z

H ∈ R are given by(
βp

βq

)
= ε

(
0 (−1)r

1 0

)( δH
δαp

δH
δαq

)
(70)

where r = pq+1, ε ∈ {−1, +1}, depending on the sign convention of the considered
physical domain.

Define the vector of flow variables to be the time-variation of the state, and the
effort variables to be the variational derivatives(

fp

fq

)
=
(

∂αp

∂t

∂αq

∂t

)
,

(
ep

eq

)
=
(

δH
δαp

δH
δαq

)
. (71)

Their product equals again the time-variation of the Hamiltonian

dH

dt
=
∫

Z

(ep ∧ fp + eq ∧ fq). (72)

Using the conservation laws (4.5) for gi = 0, the closure relations (70) and the
properties of the exterior derivative d and Stokes’ theorem, one obtains

dH

dt
=
∫

Z

εβq ∧ (−dβp) + (−1)rβp ∧ ε(−dβq)

= −ε

∫
Z

βq ∧ dβp + (−1)qβq ∧ dβp = −ε

∫
∂Z

βq ∧ βp.

(73)

Finally, as before we define the power-conjugated pair of flow and effort variables
on the boundary as the restriction of the flux variables to the boundary ∂Z of the
domain Z: (

f∂

e∂

)
=
(

βq |∂Z

βp|∂Z

)
. (74)

On the total space of power-conjugated variables, that is, the differential forms (fp, ep)

and (fq, eq) on the domain Z and the differential forms (f∂, e∂) defined on the bound-
ary ∂Z, one defines an interconnection structure by Eqn. (74) together with(

fq

fp

)
= ε

(
0 (−1)r d

d 0

)(
eq

ep

)
. (75)

This interconnection can be formalized as a special type of Dirac structure, called
Stokes–Dirac structure, leading to the definition of distributed-parameter port-Hamil-
tonian systems [35].
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5. Concluding remarks

We have surveyed some of the recently developed theory of port-Hamiltonian systems;
for further applications towards modeling, analysis, simulation and control we refer
to the literature cited below.

From the geometric point of view many questions regarding port-Hamiltonian
systems are waiting to be investigated. A theory of symmetry and reduction of port-
Hamiltonian systems has been explored in [29], [1], while some questions concern-
ing integrability of Dirac structures have been studied in [7]. A main question for
distributed-parameter port-Hamiltonian systems concerns the relation with variational
calculus.
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