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Abstract. A general notion of bisimulation is studied for dynamical

systems. An algebraic characterization of bisimulation together with an

algorithm for computing the maximal bisimulation relation is derived us-

ing geometric control theory. Bisimulation of dynamical systems is shown

to be a concept which unifies the system-theoretic concepts of state space

equivalence and state space reduction, and which allows to study equiva-

lence of systems with non-minimal state space dimension. The notion of

bisimulation is especially powerful for ’non-deterministic’ dynamical sys-

tems, and leads in this case to a notion of equivalence which is finer than

equality of external behavior. Furthermore, by merging bisimulation of

dynamical systems with bisimulation of concurrent processes a notion of

structural bisimulation is developed for hybrid systems with continuous

input and output variables.

1 Introduction

A crucial notion in the theory of concurrent processes and model-checking is
the concept of bisimulation. This notion expresses when a (sub-) process can
be considered to be externally equivalent to another process. At the same time,
classical notions in systems and control theory are state space equivalence, and
reduction of an input-state-output system to an equivalent system with mini-
mal state space dimension. These notions have been instrumental in e.g. linking
input-output models to state space models, and in studying the properties of
interconnected systems.

Developments in both areas have been rather independent, one of the reasons
being that the mathematical formalisms for describing both types of systems
(discrete processes on the one hand, and continuous dynamical systems on the
other hand) are rather different. However, with the rise of interest in hybrid
systems, there is a clear need to bring these theories together.

The aim of this paper is to make a further step in the reapproachment be-
tween the theory of concurrent processes and mathematical systems theory by
defining and characterizing a notion of bisimulation for continuous dynamical
systems, and to relate it to system-theoretic notions of state space equivalence
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and state space reduction. Furthermore, by merging the notion of bisimulation
of continuous dynamical systems with the established notion of bisimulation for
concurrent processes we give a definition of structural bisimulation for hybrid
systems with continuous communication variables.

Extensions of the notion of bisimulation to continuous dynamical systems
have been explored before in a series of innovative papers by Pappas and co-
authors [6, 7, 1, 10–12,3, 17], and the present paper is very much inspired by this
work. A main difference is that while in [10–12,17] the focus is on characterizing
bisimulation of a dynamical system by a “projected” dynamical system with
lower state space dimension (“an abstraction”), the present paper (see also [15])
deals with a general notion of bisimulation between two continuous dynamical
systems and gives algebraic conditions when two systems are bisimilar. (Note
that the abstract definition of bisimulation relations for dynamical systems has
been given before in a general context in [3].) Furthermore, the present paper
as well as [15] makes precise the relations with system-theoretic notions of state
space equivalence and state space reduction.

The continuous dynamical systems that we study are of the form

ẋ = Ax + Bu + Gd, x ∈ R
n, u ∈ R

m, d ∈ R
s

y = Cx, y ∈ R
p

(1)

where x are the state variables, u are the input variables, y are the output
variables, while d are additional input variables, which can be thought of as
disturbances. Thus we restrict to linear input-state-output systems although most
of the theory can be generalized to the nonlinear case, cf. [15]; see also [17] in the
case of abstraction. The basic problem of bisimulation we address is when two
systems of the form (1) can be considered to be externally equivalent, in the sense
that for all time instants t0 the solution trajectories for t ≥ t0 of one system are
mimicked by the other in such a way that the input and output trajectories u(t)
and y(t) of both systems are the same for t ≥ t0, without imposing any relation
between the values of their disturbance variables d.

In case the disturbance variables d are absent this problem comes down to
the usual system-theoretic notion of state space equivalence, if additionally the
systems have minimal state space dimension. Furthermore, it will become clear
that the notion of bisimulation of continuous dynamical systems and its alge-
braic characterization is closely linked to the notion of controlled invariance, as
introduced in linear systems in [19, 2]. This last connection was already explored
by Pappas and co-authors [11, 10, 12, 17] in the more restricted context when a
system is bisimilar to an ”abstraction” of itself, and [15] makes explicit how these
previously obtained results fit within the framework of the present paper. (Note
that in [10, 11, 17] the input term Bu plays the same role as the disturbance
term Gd in our setting.)

The notion of bisimulation for concurrent processes as introduced in [8, 13])
is especially powerful for concurrent processes which are non-deterministic in the
sense that branching in the (discrete) state may occur while the traces generated



by the transition system are the same. In fact, the existence of a bisimulation
relation between two deterministic processes is equivalent to equality of their
external behaviors (the set of traces or the language generated by the process),
and in this case bisimulation provides an efficient way to check equality of ex-
ternal behavior. For non-deterministic processes, however, bisimulation provides
a finer equivalence than equality of external behavior, and, for example, also
captures the deadlock behavior of concurrent processes.

A similar picture appears to arise for bisimulation of continuous dynamical
systems (1). First, a type of ”non-determinism” is present in systems (1) if we
consider u and y as the external variables of the system (analogously to the
labels of the discrete transitions of a process), while d denotes a disturbance
generator in the evolution of the state x. If d is absent then (1) reduces to an
ordinary “deterministic” system, and bisimulation can be shown (cf. [15]) to be
equivalent to equality of external behavior, while generalizing the notion of state
space equivalence to systems with non-minimal state space dimension. On the
other hand, for non-deterministic systems bisimulation will be a stronger (finer)
type of equivalence than equality of external behavior.

By combining the characterization of bisimulation of continuous dynamical
systems with the usual notion of bisimulation for concurrent processes we will
propose a notion of structural bisimulation for hybrid systems with continu-
ous communication variables, which lends itself to algebraic characterizations.
Indeed, in [14] this has been worked out in the special case of switching linear
systems without invariants and guards, including an algorithm for computing the
maximal bisimulation relation. The general proposed notion of structural hybrid
bisimulation makes use of the definition of hybrid automata with continuous
communication variables as recently provided in [16].

The structure of the paper is as follows. In Section 2 a linear-algebraic char-
acterization of bisimulation is given, based on geometric control theory. The
maximal bisimulation relation is computed in Section 3, and reduction of dy-
namical systems is treated using the notion of a bisimulation relation between
the system and itself. In Section 4 a notion of structural bisimulation for hy-
brid system automata with continuous input and output variables is provided.
Finally, Section 5 contains the conclusions and questions for further research.

2 Bisimilar linear dynamical systems

Consider two dynamical systems of the form (1):

Σi :
ẋi = Aixi + Biui + Gidi, xi ∈ Xi, ui ∈ U , di ∈ Di

yi = Cixi, yi ∈ Y i = 1, 2
(2)

with Xi,Di,U ,Y finite-dimensional linear spaces (over R).
Before defining bisimulation we need to specify the solution trajectories of

the systems (the “semantics”). That is, we have to specify the function classes of
admissible input functions u : [0,∞) → U and admissible disturbance functions



d : [0,∞) → D, together with compatible function classes of state and output
solutions x : [0,∞) → X and y : [0,∞) → Y . For compactness of notation
we usually denote these time-functions respectively by u(·), d(·), x(·) and y(·).
The exact class from which the functions are chosen is not very important.
For example, we can take all functions to be C∞ although in some cases it
may be natural/advantageous to require the property that if d1(·) and d2(·) are
admissible disturbance functions then for every τ ≥ 0 also the function d3(·)
defined by d3(·) = d1(·)(0 ≤ t < τ) and d3(·) = d2(·)(t ≥ τ) is admissible.

Definition 1. A (linear) bisimulation relation between Σ1 and Σ2 is a linear
subspace R ⊂ X1 × X2 with the following property. Take any (x10, x20) ∈ R
and any joint input function u1(·) = u2(·). Then for every disturbance function
d1(·) there should exist a disturbance function d2(·) such that the resulting state
solution trajectories x1(·), with x1(0) = x10, and x2(·), with x2(0) = x20, satisfy

(i) (x1(t), x2(t)) ∈ R, for all t ≥ 0 (3)

(ii) C1x1(t) = C2x2(t), for all t ≥ 0 (4)

(or more precisely, for all t ≥ 0 for which the trajectories are defined). Con-
versely, for every disturbance function d2(·) there should exist a disturbance func-
tion d1(·) such that again the resulting state trajectories x1(·) and x2(·) satisfy
(3) and (4).

Hence for every pair (x10, x20) ∈ R all possible trajectories x1(·) with x1(0) = x10

can be ”simulated” by a trajectory x2(·) with x2(·) = x20 in the sense of giving
the same input-output data for all future times while (x1(t), x2(t)) ∈ R for all
t ≥ 0, and conversely.

Remark 1. A similar definition (for the case that ui is absent) has been given
before in a general context in [3].

We shall only deal with linear bisimulation relations, that is, R is throughout
assumed to be a linear subspace of X1 × X2. Hence we will drop the adjective
”linear”, and simply call R a bisimulation relation. (See [15] for a treatment of
bisimulation of nonlinear systems.)

Definition 2. Two systems Σ1 and Σ2 as in (2) are bisimilar if there exists a
bisimulation relation R ⊂ X1 ×X2 with the property that

π1(R) = X1, π2(R) = X2 (5)

where πi : X1 ×X2 → Xi, i = 1, 2, denote the canonical projections.

Remark 2. Definition 2 constitutes a slight departure from the definition of
bisimulation relation as usually given for discrete processes [8, 13], by impos-
ing the extra requirement (5). The reason is that in computer science discrete
processes are usually defined with respect to a fixed initial state (or, a subset of
initial conditions). In our setting we consider the behavior of the systems Σi for
arbitrary initial states. Hence for every initial condition x10 of Σ1 there should



exist an initial condition x20 of Σ2 with (x10, x20) ∈ R and vice versa; thus im-
plying (5). The generalization to subsets of initial conditions Xi0 ⊂ Xi obviously
can be done by relaxing (5) to πi(R) = Xi0, i = 1, 2.

Remark 3. For G1 = G2 = 0 the above notion of bisimilarity is close to the usual
notion of state space equivalence of two input-state-output systems

Σi :
ẋi = Aixi + Biui, xi ∈ Xi, ui ∈ U , yi ∈ Y

yi = Cixi i = 1, 2
(6)

Indeed, in this case one usually starts with a linear equivalence mapping S :
X1 → X2,
which is assumed to be invertible (implying that dim X1 = dim X2) with the
property that

Sx1(t) = x2(t), for all t ≥ 0 (7)

Cx1(t) = Cx2(t), for all t ≥ 0 (8)

for all state trajectories x1(·) and x2(·) resulting from initial conditions x10 and
x20 related by Sx10 = x20 and all input-functions u1(·) = u2(·). Defining the
linear subspace

R = {(x1, x2) ∈ X1 ×X2 | x2 = Sx1} (9)

(i.e., the graph of the mapping S) it is easily seen that R is a bisimulation relation
which satisfies π1(R) = X1 trivially and π2(R) = X2 because of invertibility of
S.

Clearly, by allowing R to be a relation instead of the graph of a mapping,
the notion of bisimilarity even in the case G1 = G2 = 0 is more general than
state space equivalence. In particular, we may allow X1 and X2 to be of different
dimension. Furthermore, by doing so we incorporate in the notion of bisimilarity
the notion of reduction of an input-state-output system to a lower-dimensional
input-state-output system, and especially the reduction to a minimal input-state-
output system. This is worked out in [15].

Using well-known ideas from state space equivalence of linear dynamical sys-
tems and especially from the theory of controlled invariance, see e.g. [19, 2], it
is easy to derive an algebraic characterization of the notion of a bisimulation
relation.

Proposition 1. A subspace R ⊂ X1 ×X2 is a bisimulation relation between Σ1

and Σ2 if and only if for all (x1, x2) ∈ R and all u ∈ U the following properties
hold:

(i) For all d1 ∈ D1 there should exist a d2 ∈ D2 such that

(A1x1 + B1u + G1d1, A2x2 + B2u + G2d2) ∈ R, (10)

and conversely for every d2 ∈ D2 there should exist a d1 ∈ D1 such that (10)
holds.



(ii)
C1x1 = C2x2 (11)

Proof. Consider (3). Then by differentiating x1(t) and x2(t) with respect to t
and evaluating at any t we obtain (10), with x1 = x1(t), x2 = x2(t), u = u1(t) =
u2(t), d1 = d1(t), d2 = d2(t). Conversely, if (10) holds then (ẋ1(t), ẋ2(t)) ∈ R for
all t ≥ 0, thus implying (3). Equivalence of (4) and (11) is obvious.

A main theorem proved in [15] is the following.

Theorem 1. A subspace R ⊂ X1 × X2 is a bisimulation relation between Σ1

and Σ2 if and only if

(a) R + im

[

G1

0

]

= R + im

[

0
G2

]

=: Re

(b)

[

A1 0
0 A2

]

R ⊂ Re

(c) im

[

B1

B2

]

⊂ Re

(d) R ⊂ ker

[

C1

... − C2

]

(12)

Remark 4. Note that a subspace R ⊂ X1 ×X2 satisfies properties (12a,b) if and
only if the mapping F (from subspaces S ⊂ X1×X2 to subspaces F (S) ⊂ X1×X2)
defined by

S
F
7→ {z ∈ X1 ×X2 |

[

A1 0
0 A2

]

z + im

[

G1

0

]

⊂ S + im

[

0
G2

]

,
[

A1 0
0 A2

]

z + im

[

0
G2

]

⊂ S + im

[

G1

0

]

}

satisfies R ⊂ F (R). This will be instrumental to compute the maximal bisimu-
lation relation, see Algorithm 2; in fact, the maximal bisimulation relation turns
out to be a fixed-point of this mapping. (This is well-known in the theory of
bisimulation for concurrent processes [8].)

Bisimilarity is easily seen to imply equality of external behavior. Consider two
systems Σi, i = 1, 2, as in (2), with external behavior Bi defined as

Bi := {(ui(·), yi(·) | ∃xi(·), di(·) such that (2) is satisfied } (13)

Proposition 2. Let Σi, i = 1, 2, be bisimilar. Then their external behaviors Bi

are equal.

However, in the case of non-deterministic systems, that is, di is present, sys-
tems may have the same external behavior, while not being bisimilar. This is
illustrated by the following example.



Example 1. Consider the two systems

Σ1 :
ẋ1 = x2

ẋ2 = d1

y1 = x1
(14)

and

Σ2 :
ż = d2

y2 = z
(15)

It can be readily seen that there does not exist any bisimulation relation between
Σ1 and Σ2 (consider condition (12a)). On the other hand, if we restrict e.g.
to C∞ external behaviors then obviously B1 = B2. (Note the different logical
quantifiers in the definition of bisimilarity and in equality of external behavior.
For bisimilarity there should exist for every x1, x2 a z such that for every d1 there
exists a d2 with equal external trajectories and conversely, while for equality of
external behavior there should exist for every x1, x2, d1 a pair z, d2 with equal
external trajectories, and conversely.)

An interpretation of the fact that Σ1 and Σ2 are not bisimilar can be given
as follows. Suppose we “test” the system Σ1 at some time instant t = t0 in the
sense of observing one of its possible external trajectories y1(t), t ≥ t0. At t = t0
the system Σ1 is in a given, but unknown, initial state (x1(t0), x

2(t0)). Hence,
all possible runs y1(t), t ≥ t0, starting from this fixed initial state will have a
fixed time-derivative ẏ1(t0) = x2(t0) at t = t0. On the other hand, for Σ2 the
possible runs y2(t), t ≥ t0, can have arbitrary time-derivative at t = t0. Hence,
Σ1 and Σ2 can be considered to be externally different.

For deterministic systems (di void) it is shown in [15] that equality of external
behavior does imply bisimilarity, and how the bisimulation relation can be easily
derived.

3 Maximal bisimulation relation and reduction

In this section we first show how to compute the maximal bisimulation relation
R ⊂ X1 × X2 for two linear dynamical systems Σ1 and Σ2. The way to do this
is very similar to the computation of the maximal controlled invariant subspace
contained in a given subspace, which is the central algorithm in linear geomet-
ric control theory [19]. Furthermore, structurally the algorithm is the same as
the existing algorithms to compute the maximal bisimulation relation for two
discrete processes, see e.g. [5]. For details we refer to [15].

First we remark that the maximal bisimulation relation exists if there exists
at least one bisimulation relation (contrary to e.g. the minimal bisimulation
relation). The argument is similar to the argument showing the existence of
a maximal controlled invariant subspace, and is based on the following simple
observations.

Proposition 3. Let Ra ⊂ X1 ×X2 and Rb ⊂ X1 ×X2 be bisimulation relations.
Then also Ra + Rb ⊂ X1 × X2 is a bisimulation relation.



Proof. Since Ra,Rb are bisimulation relations they satisfy properties (12). It
follows that also Ra + Rb satisfies (12), and thus is a bisimulation relation.

Proposition 4. Given Σ1 and Σ2 and suppose there exists a bisimulation rela-
tion between Σ1 and Σ2. Then the maximal bisimulation relation exists.

Proof. Suppose there exists a bisimulation relation. Let Rmax be a bisimulation
relation of maximal dimension. Take any other bisimulation relation R. Then
R ⊂ Rmax, since otherwise dim (R+Rmax) > dim Rmax while also R+Rmax

is a bisimulation relation; a contradiction with the maximality of dimension of
Rmax.

The maximal bisimulation relation Rmax can be computed in the following
way, similarly to the algorithm to compute the maximal controlled invariant
subspace [19]. For notational convenience define

A× :=

[

A1 0
0 A2

]

, G×

1 :=

[

G1

0

]

, G×

2 :=

[

0
G2

]

, C× :=

[

C1

... − C2

]

(16)

Algorithm 2. Given two dynamical systems Σ1 and Σ2. Define the following
sequence Rj , j = 0, 1, 2, · · · of linear subspaces of X1 × X2

R0 = X1 ×X2

R1 =
{

z ∈ R0 | z ∈ kerC×
}

R2 =
{

z ∈ R1 | A×z + im G×

1 ⊂ R1 + im G×

2 , A×z + im G×

2 ⊂ R1 + im G×

1

}

...

Rj+1 =
{

z ∈ Rj | A×z + im G×

1 ⊂ Rj + im G×

2 , A×z + im G×

2 ⊂ Rj + im G×

1

}

(17)

Assumption 3 Assume that the subspaces Rj in (17) are non-empty.

Theorem 4. Let Assumption 3 be satisfied. The sequence of subspaces Rj sat-
isfies the following properties.

1. R0 ⊃ R1 ⊃ R2 · · · ⊃ Rj ⊃ Rj+1 ⊃ · · ·
2. There exists a finite k such that Rk = Rk+1 =: R∗ and then Rj = R∗ for

all j ≥ k.
3. R∗ is the maximal subspace of X1 × X2 satisfying properties (12a,b,d) of

Proposition 1.

The proof is very similar to the proof of the corresponding properties of the
algorithm for computing the maximal controlled invariant subspace [19], and is
given in [15].



If R∗ as obtained from Algorithm 2 satisfies property (12c), then it follows
that R∗ equals the maximal bisimulation relation Rmax between Σ1 and Σ2,
while if R∗ does not satisfy property (12c) then there does not exist any bisim-
ulation relation between Σ1 and Σ2. With regard to bisimilarity (Definition 2),
we have the following immediate consequence.

Corollary 1. Σ1 and Σ2 are bisimilar if and only if Assumption 3 is satisfied
and R∗ satisfies Property (12c) and Equation (5).

In the rest of this section we study the question how to reduce a linear dynamical
system to a system with lower state space dimension, which is bisimilar to the
original system, and in particular how to reduce the system to a bisimilar system
with minimal state space dimension. This is achieved by considering bisimulation
relations between the system and a copy of itself. Furthermore, the reduction
to a bisimilar system with minimal state space dimension can be performed by
using the same algorithm as given in the previous section for computing the
maximal bisimulation relation. Actually, this idea is well-known in the context
of concurrent processes, see e.g. [5]. Consider a linear dynamical system as in
(1)

Σ :
ẋ = Ax + Bu + Gd, x ∈ X , u ∈ U , d ∈ D

y = Cx, y ∈ Y
(18)

with X ,U ,Y and D finite-dimensional linear spaces. Now consider a bisimulation
relation between Σ and itself, that is, in view of Theorem 1, subspaces R ⊂ X×X
satisfying

(a) R + im

[

G
0

]

= R + im

[

0
G

]

=: Re

(b)

[

A 0
0 A

]

R ⊂ Re

(c) im

[

B
B

]

⊂ Re

(d) R ⊂ ker

[

C
... − C

]

(19)

Every R ⊂ X ×X defines a relation on X by saying that xa, xb ∈ X are related
by R if and only if (xa, xb) ∈ R. For reduction we should restrict attention to
R ⊂ X ×X such that the corresponding relation on X is an equivalence relation,
i.e., R is reflexive ((x, x) ∈ R for all x ∈ X ), symmetric ((xa, xb) ∈ R ⇐⇒
(xb, xa) ∈ R), and transitive ((xa, xb) ∈ R, (xb, xc) ∈ R ⇒ (xa, xc) ∈ R). This
can be done without loss of generality. Indeed, by Proposition 3 we may always
add to any bisimulation relation R the identity bisimulation relation Rid :=
{(x, x) | x ∈ X}, thus enforcing reflexivity. Furthermore, let R satisfy (19), then
also the inverse relation R−1 := {(xa, xb) | (xb, xa) ∈ R} satisfies (19), implying
that the symmetric closure R + R−1 satisfies (19). Finally, for linear relations



reflexivity and symmetry already implies transivity: if (xa, xb), (xb, xc) ∈ R, then
(xa−xc, 0) = (xa, xb)− (xc, xb) ∈ R, and thus (xa, xc) = (xa−xc, 0)+(xc, xc) ∈
R. Any equivalence relation R ⊂ X ×X can be uniquely associated with a linear
subspace R̄ ⊂ X as follows:

R̄ := {xa − xb | (xa, xb) ∈ R} (20)

Indeed, R̄ defined by (20) is a linear space if and only if R is reflexive and
symmetric (and therefore an equivalence relation). In terms of R̄ conditions (19)
reduce as follows.

Theorem 5. Let R ⊂ X × X be an equivalence relation, and define R̄ ⊂ X as
in (19). Conditions (19a,b,c,d) for R are equivalent to

AR̄ ⊂ R̄ + im G

R̄ ⊂ kerC
(21)

Proof. It is readily seen that (19b,d) are equivalent to (21). Satisfaction of (19a,c)
follows from reflexivity of R.

A subspace R̄ satisfying the first line of (21) is called in geometric control the-
ory a controlled invariant subspace , cf.[2, 19]. Thus there is a one-to-one corre-
spondence between bisimulation equivalence relations R and controlled invariant
subspaces R̄ which are contained in kerC.

The maximal bisimulation Rmax = R∗ between Σ and itself always exists,
since it contains Rid. Hence R∗ is reflexive, while by symmetry of the data it
follows that the symmetric closure of R∗ (adjoining (xb, xa) if (xa, xb) ∈ R∗) also
satisfies (19a,b,d), and hence R∗ is symmetric. Thus the maximal bisimulation
relation R∗ is an equivalence relation. The corresponding subspace R̄∗ ⊂ X is
precisely the maximal controlled invariant subspace contained in kerC, and can
be computed in this way, cf. [19, 2].

It is now clear how to reduce Σ to a lower-dimensional system that is bisimilar
to Σ. Let R be a bisimulation equivalence relation. Define the reduced state space

XR := X/R̄ (22)

with canonical projection ΠR : X → X/R̄. By the first line of (21) there exists
a ”feedback” map K such that

(A + GK)R̄ ⊂ R̄ (23)

and thus A + GK projects to a linear map AR : XR → XR satisfying ARΠR =
ΠR(A + GK). Furthermore, define GR := ΠRG, BR := ΠRB, and by the
second line of (21) we may define CR : XR → Y such that CRΠR = C. Together
this defines a reduced system

ΣR :
ẋR = ARxR + BRu + GRd

y = CRxR

(24)



Proposition 5. (See [15] for the proof.) Let R be a bisimulation equivalence
relation between Σ and itself, and construct ΣR as above. Then ΣR is bisimilar
to Σ. Furthermore, let R∗ denote the maximal bisimulation relation between Σ
and itself. Then ΣR∗ is the smallest system that is bisimilar by reduction to Σ.

4 Structural bisimulation of hybrid systems with

continuous input-output behavior

Aim of this section is to characterize bisimulation for hybrid systems with dis-
crete and continuous external variables. The discrete external variables are the
actions corresponding to the discrete transitions, while the continuous external
variables are the continuous inputs and outputs as before. The bisimulation re-
lation should thus respect the total external behavior of the hybrid system, that
is, with respect to the actions, as well as with respect to the continuous exter-
nal variables. The inclusion of continuous external variables makes the setting
different from previous notions of bisimulation of hybrid systems, which only
involve the discrete external behavior, see e.g. [4, 1, 6, 7, 18].

We start from the definition of a hybrid automaton with continuous external
variables as given in [16].

Definition 3 (Hybrid automaton). A hybrid automaton is described by a
six-tuple Σhyb := (L,X ,A,W , E, F ), where the symbols have the following mean-
ings.

- L is a finite set, called the set of discrete states or locations.

- X is a finite-dimensional manifold called the continuous state space.
- A is a finite set of symbols called the set of discrete communication variables,

or actions.
- W is a finite-dimensional linear space called the space of continuous commu-

nication variables. In the sequel the vector w ∈ W will be often partitioned
into an input vector u and an output vector y.

- E is a subset of L×L×A×X ×X ; a typical element of this set is denoted
by (l−, l+, a, x−, x+).

- F is a subset L × TX ×W, where TX denotes the tangent bundle of X ; a
typical element of this set is denoted by (l, x, ẋ, w).

A hybrid trajectory or run of the hybrid system Σhyb on the time-interval [0, T ]
consists of the following ingredients. First such a trajectory involves a discrete
set E ⊂ [0, T ] denoting the event times t ∈ [0, T ] associated with the trajectory.
Secondly, there is a function l : [0, T ] → L which is constant on every subinterval
between subsequent event times ta, tb ∈ E , and which specifies the location of
the hybrid system for t ∈ (ta, tb). Thirdly, the trajectory involves admissible
time-functions x : [0, T ] → X , w : [0, T ] → W , satisfying for all t 6∈ E the
dynamics

(l, x(t), ẋ(t), w(t)) ∈ F (25)



with l the location between subsequent event times ta, tb ∈ E . Finally, the tra-
jectory includes a discrete function a : E → A such that for all t ∈ E

(l(t−), l(t+), a(t), x(t−), x(t+)) ∈ E (26)

Here, of course, x(t−) and x(t+) denote the limit values of the variables x when
approaching t from the left, respectively from the right, and the same for l(t−)
and l(t+). (Hence we throughout assume that the class of admissible functions
x is chosen in such a way that these left and right limits are defined.) Thus a
hybrid run is specified by a five-tuple

r = (E , l, x, a, w) (27)

Note that the subset F (the flow conditions) specifies the continuous dynam-
ics of the hybrid system depending on the location the system is in, and this
continuous dynamics remains the same between subsequent event times. On the
other hand, E (the event conditions) stands for the event behavior at the event
times, entailing the discrete state variables l ∈ L and the discrete communica-
tion variables a ∈ A, together with a reset of the continuous state variables x. In
[16] it is discussed how the flow conditions F incorporate the notion of location
invariant, while the event conditions E include the notion of guard.

Remark 5. Much more can be said about the possible semantics of the hybrid
automaton defined above. In particular, additional requirements can be imposed
on the set E ⊂ [0, T ] of event times, while on the other hand the notion of a
trajectory can be further generalized by allowing for multiple events at the same
event time. For a discussion of these issues we refer to [16].

In terms of the hybrid runs a natural definition of hybrid bisimulation is
given as follows:

Definition 4 (Hybrid bisimulation relation). Consider two hybrid automata

Σhyb
i = (Li,Xi,Ai,Wi, Ei, Fi), i = 1, 2, as above. A hybrid bisimulation between

Σhyb
1 and Σhyb

2 is a subset

R ⊂ (L1 ×X1) × (L2 × X2)

with the following property. Take any (l10, x10, l20, x20) ∈ R. Then for every

hybrid run r1 = (E1, l1, x1, a1, w1) of Σhyb
1 with (l1(0), x1(0)) = (l10, x10) there

should exist a hybrid run r2 = (E2, l2, x2, a2, w2) of Σhyb
1 with (l2(0), x2(0)) =

(l20, x20) such that for all times t for which the hybrid run r1 is defined

– E1 = E2 =: E

– w1(t) = w2(t) for all t ≥ 0 with t 6∈ E

– a1(t) = a2(t) for all t ≥ 0 with t ∈ E



– (l1(t), x1(t), l2(t), x2(t)) ∈ R for all t ≥ 0 with t 6∈ E ,

and conversely for every hybrid run r2 of Σhyb
2 there should exist a hybrid run

r1 of Σhyb
1 with the same properties.

A more checkable version of hybrid bisimulation is obtained by merging the pre-
vious type of algebraic characterization of bisimulation relations for dynamical
systems with the common notion of bisimulation for concurrent processes. Hereto
we throughout assume that the continuous state space parts of the bisimulation
relation R, namely all sets

Rl1l2 := {(x1, x2) | (l1, x1, l2, x2) ∈ R} ⊂ X1 ×X2 (28)

are submanifolds.

Definition 5 (Structural hybrid bisimulation relation). Consider two hy-

brid automata Σhyb
i = (Li,Xi,Ai,Wi, Ei, Fi), i = 1, 2, as above. A structural

hybrid bisimulation relation between Σhyb
1 and Σhyb

2 is a subset

R ⊂ (L1 ×X1) × (L2 × X2)

such that all sets Rl1l2 are submanifolds and have the following property. Take
any (l−1 , x−

1 , l−2 , x−

2 ) ∈ R. Then for every l+1 , x+
1 , a for which

(l−1 , l+1 , a, x−

1 , x+
1 ) ∈ E1,

there should exist l+2 , x+
2 such that

(l−2 , l+2 , a, x−

2 , x+
2 ) ∈ E2

while (l+1 , x+
1 , l+2 , x+

2 ) ∈ R, and conversely.
Furthermore, take any (l1, x1, l2, x2) ∈ R. Then for every ẋ1, w for which

(l1, x1, ẋ1, w) ∈ F1

there should exist ẋ2 such that

(l2, x2, ẋ2, w) ∈ F2

while (ẋ1, ẋ2) ∈ T(x1,x2)Rl1l2 , and conversely.

It is easily seen that any structural hybrid bisimulation relation is a hybrid
bisimulation relation in the sense of Definition 4. The basic observation is that
the infinitesimal invariance condition (ẋ1(t), ẋ2(t)) ∈ T(x1,x2)Rl1l2 implies that
the trajectory (l1, l2, x1(t), x2(t)) remains in R.

Definition 5 provides a checkable condition for bisimulation once we have de-
rived algebraic conditions for R being a structural hybrid bisimulation relation.
In particular, let X1,X2 be linear spaces with linear subspaces Rl1l2 ⊂ X1 ×X2,



while the flow conditions F assign to every l ∈ L a linear non-deterministic
input-state-output system

ẋ = Alx + Blu + Gld, x ∈ X , u ∈ U , d ∈ D

y = Clx, y ∈ Y
(29)

with w = (u, y) ∈ W := U × Y and d as before a disturbance generator. Then
we may use Theorem 1 to characterize the continuous part of the bisimulation.

For the important special case of switching linear systems, where the discrete
dynamics is independent of the continuous dynamics (no invariants nor guards,
reset map is the identity map) and all discrete transitions have the same action
label, this has been worked out in [14]. This paper also shows how to compute
in this case the maximal bisimulation relation, based on Algorithm 2 and the
underlying discrete dynamics.

5 Conclusions and outlook

We have studied a notion of bisimulation for continuous dynamical systems,
motivated by the theory of bisimulation for concurrent processes and by previ-
ously obtained results on abstraction by Pappas and co-authors. The notion of
bisimulation appears to be a notion which unifies the concepts of state space
equivalence and state space reduction, and which allows to study equivalence of
systems with non-minimal state space dimension, cf. [15].

Compared with classical systems theory a new twist to the problem is given
by the idea of considering non-deterministic continuous dynamical systems. For
concurrent discrete processes the advantages of allowing non-determinism are
clear [8, 5]. Apart from abstraction we believe that there are other good reasons to
allow some type of “non-determinism” in continuous dynamical systems. Indeed,
it would be interesting to investigate if uncertainty and robustness issues can be
fruitfully cast in this framework.

We have provided a notion of structural hybrid bisimulation for hybrid sys-
tems. Main difference with existing notions is that we consider hybrid systems
which interact with the environment not only via their discrete actions but also
via their continuous (input-output) behavior. Next step is to give an algorithm
for computing the maximal structural hybrid bisimulation relation, extending
the results obtained in [14] for switching linear systems without invariants and
guards. Secondly, it is important to relate the proposed notion of structural hy-
brid bisimulation with previously proposed notions of bisimulation for hybrid
systems without (or with ’abstracted’) continuous external behavior, see e.g. [4,
1, 6, 7, 18, 11, 3].
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