AN EFFECTIVE DEFINITION OF A CONNECTED, LOCALLY CONNECTED AND PUNCTIFORM PLANE SET

BY

J. CH. BOLAND

(Communicated by Prof. H. Freudenthal at the meeting of September 25, 1954)

Let S be a plane and choose in S a system of rectangular axis. Let I be the interval $\alpha \leq x \leq \beta; y = 0$, and Q_n the rectangle $\alpha \leq x \leq \beta; 0 \leq y \leq 1$. For every x, the set $L(x)$ will be the line $x =$ constant and $0 \leq y \leq 1$. In the rectangle Q_n we construct a set A_n in the following way.

Let $C_n \subset$ be the Cantor discontinuum in I. We can divide C_n in the set $C_{1,n}$ of the triadic rational points of C_n, and the set $C_{2,n}$ of the triadic irrational points of C_n.

Now A_n is the set of all points (x, y) of Q_n so that: $x \subset C_{1,n}$ and y rational or $x \subset C_{2,n}$ and y irrational.

The set $A_n \subset Q_n$ has the following property: every continuum $K \subset Q_n$, which intersects every line $L(x)$ with $x \subset C_n$, also intersects A_n. To prove this 1) we suppose $K \cap A_n = 0$. Then for $x \subset C_{2,n}$, every point of $K \cap L(x)$ has a rational ordinate.

So $K \cap \bigcup_{x \subset C_{2,n}} L(x)$ is the sum of denumerably many sets E_1, E_2, \ldots so that all points of $E_i (i = 1, 2, \ldots)$ have the same ordinate. It can easily be shown, that if $K \cap A_n = 0$, then every E_i is compact.

Now let F_i be the projection of E_i on the X-axis. Then $F_i \subset C_{2,n}$ and F_i is compact. From our supposition that K intersects every line $L(x)$ with $x \subset C_n$, we see that $C_{2,n} = \bigcup_{i=1}^{\infty} F_i$. So $C = C_{1,n} \cup F_i$.

Now every F_i is compact and $F_i \cap C_{1,n} = 0$. Moreover $C_{1,n}$ is everywhere dense in C_n. So F_i is nowhere dense in C_n. Thus $C_{1,n} \cup \bigcup_{i=1}^{\infty} F_i$ is of first category, which is impossible. So $K \cap A_n \neq 0$.

If $A_n^* = A_n \setminus (L(x) + L(\beta))$, we see immediately, that also $K \cap A_n^* \neq 0$.

If we introduce the sets $B_n = A_n \setminus A_n^*$ and $B_n^* = B_n \setminus (L(x) + L(\beta))$, we can construct the desired set $A \subset Q_n$ in the following way.

Let Q_0 be the square $0 \leq x \leq 1; 0 \leq y \leq 1$. We construct the set $A_0 \subset Q_0$.

$Q_0 \setminus A_0$ contains denumerably many components. Every component is the interior of a rectangle Q. These rectangles will be enumerated in some way Q_1, Q_2, \ldots.

In Q_1 we construct the set B_1. In Q_i $(i = 2, 3 \ldots)$ we construct the sets A_i.

Now the sets P_i $(i = 0, 1, 2, \ldots)$ are defined as:

$$P_0 = A_0, \quad P_1 = B_1, \quad P_j = A_j \quad (j = 2, 3, \ldots).$$

Let for some l the sets $P_{n_1 \ldots n_l}$ be constructed, so that $Q_{n_1 \ldots n_l} \setminus P_{n_1 \ldots n_l}$ contains again denumerably many components R_i. Every R_i is the interior of a rectangle Q_i which we call $Q_{n_1 \ldots n_l} \setminus P_{n_1 \ldots n_l}$ $(i = 1, 2, \ldots)$. Then we define the sets $P_{n_1 \ldots n_l}$ as follows:

$$P_{n_1 \ldots n_l} = B'_{n_1 \ldots n_l} \subset Q_{n_1 \ldots n_l},$$

$$P_{n_1 \ldots n_l} = A_{n_1 \ldots n_l} \subset Q_{n_1 \ldots n_l} \quad (i \geq 2).$$

Then $Q_{n_1 \ldots n_l} \setminus P_{n_1 \ldots n_l}$ $(i = 1, 2, \ldots)$ has again denumerably many components, and every component is the interior of a rectangle Q_i.

Let I_1 be the interval $0 \leq x \leq 1; \ y = 0$, and let

$$D = I_1 \setminus \bigcup_{l=1}^{\infty} \bigcup_{(n_1 \ldots n_l)} C_{n_1 \ldots n_l}.$$

Finally we take the set R of all points of Q_0 with $x \subset D$ and y rational.

The desired set A is now defined as:

$$A = \bigcup_{l=1}^{\infty} \bigcup_{(n_1 \ldots n_l)} D_{n_1 \ldots n_l} \cup R.$$

To show that A has the required properties, we prove that A and $Q_0 - A$ are both punctiform. Let K be an arbitrary continuum which is contained in Q_0. If K is contained in a line parallel with the Y-axis, then it follows immediately from the construction that $K \cap A \neq 0$ and $K \cap (Q_0 \setminus A) \neq 0$.

If K is not parallel with the Y-axis, then the projection K_1 of K on the X-axis is a closed interval $\alpha \leq x \leq \beta$.

Now we can certainly find integers $n_1, n_2, \ldots n_l$, so that there exists a rectangle $Q_{n_1 \ldots n_l}$ for every point p of which the condition $x \leq x_p \leq \beta$ is fulfilled. The continuum K has then points in common with every line $L(x)$ with $\alpha \leq x \leq \beta$.

$$A \supset P_{n_1 \ldots n_l} = B'_{n_1 \ldots n_l} \subset C_{n_1 \ldots n_l}. \quad A'_{n_1 \ldots n_l} \subset B'_{n_1 \ldots n_l} \setminus B_{n_1 \ldots n_l} \subset Q_0 \setminus A.$$

From $K \cap A'_{n_1 \ldots n_l} \neq 0$, we conclude that $K \cap (Q_0 \setminus A) \neq 0$.

On the other hand $P_{n_1 \ldots n_l} = A_{n_1 \ldots n_l}$, and therefore $K \cap P_{n_1 \ldots n_l} \neq 0$. So $K \cap A \neq 0$.

We see that K intersects with A and with $Q_0 \setminus A$. Therefore A and $Q_0 \setminus A$ are both punctiform.

Now if A is not connected, then $A = A_1 \cup A_2$ with $A_1 \cap A_2 = 0$ and $A_1 \neq 0$ and $A_2 \neq 0$. Choose a point $a_1 \subset A_1$ and $a_2 \subset A_2$.

According to Knaster and Kuratowski \(^2\) there exists a continuum \(L\), which separates the plane between \(a_1\) and \(a_2\) and which does not intersect \(A\). So \(L \cap A = 0\) and hence \(L' \cap Q_0 C Q_0 \setminus A\), which is impossible since \(Q_0 \setminus A\) is punctiform and \(L \cap Q_0\) has components of diameter \(> 0\). So \(A\) must be connected. In the same way one can show that \(A\) is locally connected. So \(A\) has the required properties.