LAUDATIO

for BART L.R. DE MOOR

2004 Johann Bernoulli Lecturer

by Jan C. Willems

University of Groningen March 23, 2004
Biography

Halle, Vlaams Brabant, Belgium, in 1960

Studied engineering, Ph.D., at K.U. Leuven

Post-doc at Stanford University

Presently, Professor and head of the large research group SISTA, ESAT, K.U. Leuven (Systems & Control, Bio-informatics)
Biography

- Halle, Vlaams Brabant, Belgium, in 1960

- Studied engineering, Ph.D., at K.U. Leuven

- Post-doc at Stanford University

- Presently, Professor and head of the large research group SISTA, ESAT, K.U. Leuven (Systems & Control, Bio-informatics)
Biography

- 1991-92 Chief of Staff of Wivina De Meester, Belgian minister of Science and Education
- 1992-94 Chief of Staff of Wilfried Martens, Belgian prime minister
- 1994-98 Science Advisor, Government of Flanders
Research

- Applications of SVD, numerical Linear Algebra
- Subspace Identification
- Model Predictive Control, etc.
- Quantum control and information theory
- Learning algorithms
- Bio-informatics
System identification

Observed data \rightarrow System model
System identification

Observed data \rightarrow System model

Case on interest:

Data = a finite vector time-series record

$$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T)$$

$$w(t) \in \mathbb{R}^w$$

Model:

a dynamical system that ‘explains’ this time-series
Subspace Identification

subspace algorithms (oblique projection of ‘future’ on ‘past’) pass directly from

\[\tilde{w}(1), \ldots, \tilde{w}(t), \ldots \]

\[\downarrow \downarrow \text{ to } \downarrow \downarrow \]

\[\tilde{x}(1), \ldots, \tilde{x}(t), \ldots \]

a state trajectory of the system that produced the data.
Subspace Identification

\[\sim \quad \text{Reduce the state dimension, split } w = (u, y) \]

into inputs and outputs, and solve by least squares, using the reduced \(\tilde{x} \),

\[
\begin{bmatrix}
\tilde{x}(t_1 + 1) & \cdots & \tilde{x}(t_2) \\
\tilde{y}(t_1) & \cdots & \tilde{y}(t_2 - 1)
\end{bmatrix}
= \begin{bmatrix} A & B \\ C & D \end{bmatrix}
\begin{bmatrix}
\tilde{x}(t_1) & \cdots & \tilde{x}(t_2 - 1) \\
\tilde{u}(t_1) & \cdots & \tilde{u}(t_2 - 1)
\end{bmatrix}
\]
Subspace Identification

Reduce the state dimension, split \(w = (u, y) \) into inputs and outputs, and solve by least squares, using the reduced \(\tilde{x} \),

\[
\begin{bmatrix}
\tilde{x}(t_1 + 1) & \cdots & \tilde{x}(t_2) \\
\tilde{y}(t_1) & \cdots & \tilde{y}(t_2 - 1)
\end{bmatrix}
= \begin{bmatrix} A & B \\ C & D \end{bmatrix}
\begin{bmatrix}
\tilde{x}(t_1) & \cdots & \tilde{x}(t_2 - 1) \\
\tilde{u}(t_1) & \cdots & \tilde{u}(t_2 - 1)
\end{bmatrix}
\]

This leads to the identified model:

\[
\begin{align*}
x(t + 1) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

These subspace algorithms have very nice properties...
Surf to

http://homes.esat.kuleuven.be/~demoor/

for publications, lectures, activities, ...