DSGMP > BI > FSE > RUG

Prof. Dr. Henk de Snoo

Honorary Professor

  • room number: 478 (Bernoulliborg, building 5161)
  • phone numbers
      domestic:    (050) 363 3963
international:    +31 50 363 3963
  • e-mail: H.S.V.de.Snoo rug.nl

Research

  • Abstract boundary-value problems
  • Semibounded and sectorial relations and forms, and their decompositions
  • Structure of linear relations
  • Classification of (generalized) Nevanlinna functions; asymptotic expansions
  • Singular perturbations of selfadjoint operators
  • Canonical systems of differential equations; Sturm-Liouville equations (with floating singularities)
  • System-theoretic realizations of classes of Nevanlinna functions and Nevanlinna families

Henk's recent publications

S. Hassi, A. Sandovici, and H.S.V. de Snoo. Factorized sectorial relations, their maximal sectorial extensions, and form sums. Banach J. Math. Anal., to appear, 2019.   bib
S. Hassi, H.S.V. de Snoo, and H. Winkler. Limit properties of eigenvalues in spectral gaps. Operator Theory: Adv. Appl., 263:335–355, 2018.   bib
S. Hassi, Z. Sebestyén, and H. de Snoo. Lebesgue type decompositions for linear relations and Ando’s uniqueness criterion. Acta Sci. Math. (Szeged), 84:465––507, 2018.   bib
S. Hassi, M. Möller, and H. de Snoo. Limit-point/limit-circle classification for Hain–Lüst type equations. Mathematische Nachrichten, 291(4):652–668, 2018.   doi
url
bib
H. de Snoo and H. Woracek. The Krein formula in almost Pontryagin spaces. A proof via orthogonal coupling. Indagationes Mathematicae, 29(2):714 – 729, 2018.   url
bib
H.S.V. de Snoo and H. Woracek. Compressed resolvents, Q-functions and h_0-resolvents in almost Pontryagin spaces. Operator Theory: Adv. Appl., 263:425–483, 2018.   bib

(For more details go to Henk's personal home page.)