DSGMP > MATHS > JBI > FWN > RUG

Publications by Gert Vegter

Amit Chattopadhyay, Gert Vegter, and Chee K. Yap. Certified computation of planar Morse-Smale complexes. Journal of Symbolic Computation, 78:3–40, 2017. Algorithms and Software for Computational Topology.   doi
url
bib
M. Bogdanov, M. Teillaud, and G. Vegter. Delaunay triangulations on orientable surfaces of low genus. In Leibniz International Proceedings in Informatics, eds., 32nd International Symposium on Computational Geometry (SoCG 2016). Pages 20:1–20:17, 2016.   url
bib
P. Pranav, H. Edelsbrunner, R. van de Weygaert, G. Vegter, M. Kerber, B. Jones, and M. Wintraecken. The Topology of the Cosmic Web in Terms of Persistent Betti Numbers. Monthly Notices of the Royal Astronomical Society, 465:4281–4310, 2016.   url
bib
R Dyer, G Vegter, and M.H.M.J. Wintraecken. Riemannian simplices and triangulations. In Proceedings 31st International Symposium on Computational Geometry (SOCG 2015). July. Leibniz International Proceedings in Informatics, pages 255–269, July 2015.   doi
url
bib
R. Dyer, G. Vegter, and M.H.M.J. Wintraecken. Riemannian simplices and triangulations. Geometriae Dedicata, 179(1):1–48, 2015.   doi
url
bib
M.H.M.J. Wintraecken and G. Vegter. On the Optimal Triangulation of Convex Hypersurfaces, Whose Vertices Lie in Ambient Space. Mathematics in Computer Science, 9(3):345–353, 2015.   doi
url
bib
Jyh-Ming Lien, Vikram Sharma, Gert Vegter, and Chee Yap. Isotopic Arrangement of Simple Curves: An Exact Numerical Approach Based on Subdivision. In Proceedings Mathematical Software – ICMS 2014. Pages 277–282, 2014.   bib
H.W. Broer and G. Vegter. Resonance and singularities. In S. Ibáñez, J.S. Pérez del Río, A. Pumariño, and J.Á. Rodríguez, eds., Progress and Challenges in Dynamical Systems. Heidelberg, Springer, pages 89–126, 2013.   url
bib
H. W. Broer, S. J. Holtman, G. Vegter, and R. Vitolo. Dynamics and Geometry Near Resonant Bifurcations. Regular and Chaotic Dynamics, 16(1-2):39–50, 2011.   url
bib
H. W. Broer, S.J. Holtman, and G. Vegter. Recognition of resonance type in periodically forced oscillators. Physica D, 239(17):1627–1636, 2010.   bib
H.W. Broer, S.J. Holtman, G. Vegter, and R. Vitolo. Geometry and dynamics of mildly degenerate Hopf-Neimarck-Sacker families near resonance. Nonlinearity, 22:2161–2200, 2009.   url
bib
H.W. Broer, S.J. Holtman, and G. Vegter. Recognition of the bifurcation type of resonance in mildly degenerate Hopf-Neimark-Sacker families. Nonlinearity, 21:2463–2482, 2008.   bib
H.W. Broer and G. Vegter. Generic Hopf-Ne\u\imark-Sacker bifurcations in feed forward systems. Nonlinearity, 21:1547–1578, 2008.   bib
H.W. Broer, M. Golubitsky, and G. Vegter. Geometry of resonance tongues. In Singularity Theory, Proc. 2005 Marseille Singularity School and Conference,dedicated to Jean-Paul Brasselet on His 60th Birthday. Pages 327–356, 2007.   bib
H.W. Broer, A. Hagen, and G. Vegter. Numerical continuation of normally hyperbolic invariant manifolds. Nonlinearity, 20:1499–1534, 2007.   bib
H.W. Broer, A. Hagen, and G. Vegter. A versatile algorithm for computing invariant manifolds. In Model Reduction and Coars-Graining Approaching for Multiscale Phenomena. Pages 17–38, 2006.   bib
H.W. Broer, M. Van Noort, C. Simó, and G. Vegter. The parametrically forced pendulum: a case study in $1\frac12$ degree of freedom. J. Dynamics and Differential Equations, 16(4):897—947, 2004.   bib