Previous
Serie II
Next

# Serie II, Nr 1a

## Model of a Kummer surface. All sixteen double points are real.

**Mathematical description**

A surface of degree 4 in complex projective space can have at most 16 ordinary double points.
Quartic surfaces which do have this number of double points are called Kummer
surfaces. These surfaces have a beautiful structure, called the Kummer's (16,6) configuration. That means
that there are 16 planes (called tropes in the classical literature) each
of which contains 6 double points and through each of the 16 double points pass
6 of the planes. A Kummer surface can have 16, 8, 4, 2 or 0 real double points.

The model illustrates the case where all 16 double points are real.

**Title model and translation**

Modelle der Kummer'schen Fläche. Alle sechzehn Knotenpunkte sind reell.

Model of a Kummer surface. All sixteen double points are real.

**Text on Sticker and translation**

Kummer'sche Fläche.

Kummer surface.

**Designer**

K. Rohn under the supervision of Dr. Klein

München in 1877

**Company**

Martin Schilling in Leipzig.

**Original price**

Mark 28,-

**Dimension**

21-21-18 cm

**Material**

Plaster

**Literature**

Schilling, M., Catalog mathematischer Modelle für den höheren
mathematischen Unterricht, Leipzig: Verlag von Martin Schilling, 1911