Systems, Control and Applied Analysis > MATH > JBI > FWN > RUG

Book chapters

2015

L.Q. Thuan and M.K. Camlibel. Controllability and stabilizability of discontinuous bimodal piecewise linear systems. In Mathematical Control Theory I: Nonlinear and Hybrid Control Systems. Springer, 2015.   bib
A. Everts and M.K. Camlibel. When is a linear complementarity system disturbance decoupled? In Mathematical Control Theory II: Behavioral Systems and Robust Control. Springer, 2015.   bib

2014

A Dijksma. Schur Analysis in an Indefinite Setting. In Operator Theory. Springer, 2014.   bib

2013

AJ van der Schaft and P Rapisarda. From integration by parts to state and boundary variables of linear differential and partial differential systems. In Mathematical System Theory, Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pages 437–448. . CreateSpace, 2013. ISBN 978-1470044008.   bib
AJ van der Schaft. Port-Hamiltonian differential-algebraic systems. In Surveys in Differential- Algebraic Equations I, pages 173–226. . Springer, 2013.   bib
A.J. van der Schaft. Port-Hamiltonian differential-algebraic systems. In Surveys in Differential-Algebraic Equations I, pages 173–226. . Springer, 2013.   bib

2012

S. Hassi, A.J. van der Schaft, H.S.V. de Snoo, and H.J. Zwart. Dirac structures and boundary relations. In Operator Methods for Boundary Value Problems, pages 259–274. . Cambridge University Press, 2012.   bib
G. Angelone, F. Vasca, L. Iannelli, and M.K. Camlibel. Dynamic and steady-state analysis of switching power converters made easy: complementarity formalism. In Dynamics and Control of Switched Electronic Systems, pages 217–244. . Springer, 2012.   bib

2011

R.V. Polyuga and A.J. van der Schaft. Structure preserving port-Hamiltonian model reduction of electrical circuits. In Model Reduction for Circuit Simulation, pages 241–260. . Springer, 2011.   bib
H.L. Trentelman. Behavioral methods in control. In The Control Handbook, pages 558–581. . CRC Press, Taylor and Francis, 2011.   bib
A.J. van der Schaft and B.M. Maschke. A port-Hamiltonian formulation of open chemical reaction networks. In Advances in the Theory of Control, Signals and Systems with Physical Modeling, pages 339–348. . Springer, 2011.   bib

2010

H.L. Trentelman. On behavioral equivalence of rational representations. In Perspectives in Mathematical System Theory, Control, and Signal Processing. Springer, 2010.   bib
A.J. van der Schaft and B.M. Maschke. A port-Hamiltonian formulation of open chemical reaction networks. In Advances in the Theory of Control, Signals and Systems with Physical Modeling, pages 339–349. . Springer, 2010.   bib

2009

E. Garcia-Canseco, R. Ortega, R. Pasumarthy, and A.J. van der Schaft. Control of finite-dimensional port-Hamiltonian systems. In Modeling and Control of Complex Physical Systems: the Port-Hamiltonian Approach, pages 273–318. . Springer, 2009.   bib
A.J. van der Schaft and B.M. Maschke. Conservation laws and lumped system dynamics. In Model-Based Control: Bridging Rigorous Theory and Advanced Technology, pages 31–48. . Springer, 2009.   bib
A.J. van der Schaft. Port-Hamiltonian systems. In Modeling and Control of Complex Physical Systems: the Port-Hamiltonian Approach, pages 53–130. . Springer, 2009.   bib
A. Macchelli, C. Melchiorri, R. Pasumarthy, and A.J. van der Schaft. Analysis and control of infinite-dimensional port-Hamiltonian systems. In Modeling and Control of Complex Physical Systems: the Port-Hamiltonian Approach, pages 319–368. . Springer, 2009.   bib
A. Bemporad, M.K. Camlibel, W.P.M.H. Heemels, A.J. van der Schaft, and J.M. Schumacher. Further switched systems. In Handbook of Hybrid Systems Control: Theory, Tools, Applications, pages 139–192. . Cambridge University Press, 2009.   bib

2008

W.P.M.H. Heemels, M.K. Camlibel, B. Brogliato, and J.M. Schumacher. Observer-based control of linear complementarity systems. In Hybrid Systems: Computation and Control, pages 259–272. . Springer, 2008.   bib

2007

D. Eberard, B.M. Maschke, and A.J. van der Schaft. On the interconnection structures of irreversible physical systems. In Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, pages 209–220. . Springer, 2007.   bib