‘Which model ...?’ is the wrong question

N. T. Longford, SNTL and Univ. Pompeu Fabra, Barcelona, Spain

(NTL@sntl.co.uk)

Statistics: making decisions in the presence of uncertainty (analysis) and with limited resources (design)

Model as a conduit:
If I knew the model, then the analysis/inference would be efficient
— absolutely not true, and sometimes not relevant

Select a model and use it for all related inferences (a bad idea) vs.
Combine estimators for a particular purpose (e.g., min MSE for a target)
The false rationale for model selection:

Let’s find a model that looks ‘good’, and then ...

— such a model is a *random* entity — *model uncertainty*

Examples in which the search for a model is/would be a distraction:

- Textbook ANOVA (one-way, with homoscedasticity and normality)
- Clinical trials for comparing two treatments (randomisation)
- Small-area estimation (inference about districts of a country)

What is ‘good’ inference (estimation, hypothesis test, confidence interval)?

Integrity: Adhere to *this* criterion, without any conditioning

A bad (*circular*) criterion: ‘Good’ means: based on a well selected model
One-way ANOVA

(Longford, 2005, JRSS A; 2008, SORT):

Textbook:
Test the hypothesis of equal means — use the selected-model estimator
This estimator is extremely inefficient in some common settings

Use the same model for estimating σ^2
— a poor strategy (look at the degrees of freedom)

The problem is not with hypothesis testing, but with model choice in general
Bayes factors — no relief/no solution

Combine estimators, with weights specific to the target/estimand
The goal: small MSE
Gross inefficiency of the selected-model based estimator in one-way ANOVA
(Longford, 2008; SORT)
Root-MSE of alternative estimators as functions of the deviation $\mu_1 - \mu$

(Longford, 2008; SORT)
Model selection

Elementary estimators: $\hat{\mu}_1 \sim \mathcal{N}(\mu_1, \frac{1}{n_1}\sigma^2)$ and $\hat{\mu} \sim \mathcal{N}(\mu, \frac{1}{n}\sigma^2)$

Model selection: \mathcal{I} — indicator of selecting model A

$$\hat{\mu}_1^\dagger = (1 - \mathcal{I})\hat{\mu}_1 + \mathcal{I}\hat{\mu}$$

$$\mathbb{E}(\hat{\mu}_1^\dagger) = \mu_1 + p_B \{\mathbb{E}(\hat{\mu} | \mathcal{I} = 1) - \mathbb{E}(\hat{\mu}_1 | \mathcal{I} = 1)\}$$

$$\text{MSE}(\hat{\mu}_1^\dagger; \mu_1) = p_A \text{var}(\hat{\mu}_1 | \mathcal{I} = 0) + p_B \text{var}(\hat{\mu} | \mathcal{I} = 1)$$

$$+ p_A \{\mathbb{E}(\hat{\mu}_1 | \mathcal{I} = 0) - \mu_1\}^2 + p_B \{\mathbb{E}(\hat{\mu} | \mathcal{I} = 1) - \mu_1\}^2$$

$p_A = P(\mathcal{I} = 0); \ p_B = 1 - p_A$. Note: \mathcal{I} and $\hat{\mu}_1$ are correlated

Bias and large MSE are (almost) guaranteed
Combination of estimators

\[\tilde{\mu}_1 = (1 - b_1)\hat{\mu}_1 + b_1\hat{\mu}, \]

\[\text{MSE} (\tilde{\mu}_1 ; \mu_1 \mid b_1) = b_1^2 \left\{ g_1 \sigma^2 + (\mu_1 - \mu)^2 \right\} - 2b_1 g_1 \sigma^2 + \frac{\sigma^2}{n_1} \]

\[b_1^* = \frac{g_1}{g_1 + \frac{(\mu_1 - \mu)^2}{\sigma^2}} \]

where \(g_1 = \frac{1}{n_1} - \frac{1}{n} \)

Substitute \(\hat{b}_1^* \) for \(b_1^* \)

Assess the consequences of over/under-estimating \((\mu_1 - \mu)^2 / \sigma^2 \)

Scope for incorporating prior information, not necessarily Bayesian

(Longford, 2008, Chapter 1)
Clinical trials

Randomised allocation of subjects to two treatments
Estimation of the (constant) treatment effect

Including ‘important’ covariates in (a regression) analysis
— wasting degrees of freedom (Better model — Worse inference)

Crossover trials (within-subject contrasts) with design ‘AB and BA’

Freeman (1989, *Stat. Med.*): Do not estimate the *carryover*
— waste of the data from the 2nd period

— reduce the ‘weight’ given to the 2nd period

Do not choose! — combine!!
Small-area estimation

A country with districts \(d = 1, \ldots, D \) and quantities \(\theta_d \); ‘national’ value \(\theta \)

Notation: \(\hat{\theta}_d \sim Z(\theta_d, v_d), \hat{\theta} \sim Z(\theta, v) \) and \(c_d = \text{cov}(\hat{\theta}_d, \hat{\theta}) \)

A setting similar to ANOVA, except that \(D \gg \) — random effects (??)

Sample size sufficient for estimating \(\theta \), but not for \(\theta_d \) for some \(d \)

ANOVA irrelevant — composition of (unbiased) estimators \(\hat{\theta}_d \) and \(\hat{\theta} \):

\[
\tilde{\theta}_d = (1 - b_d) \hat{\theta}_d + b_d \hat{\theta}
\]

\[
b_d^* = \frac{v_d - c_d}{v_d + v - 2c_d + \sigma_B^2} = \frac{v_d}{v_d + \sigma_B^2}
\]

\[
\sigma_B^2 = \text{var}_D(\theta_d) \quad \text{— estimate} \ \sigma_B^2 \ \text{and study sensitivity} \ (\hat{v}_d)
\]

Extensions for auxiliary information (Longford, 2005)
Conclusion

The importance of model selection is vastly over-rated because of not appreciating the pervasiveness of uncertainty and ignoring the basics of conditional probabilities and distributions.

Asymptotic theory (for AIC, BIC, u&IC) is questionable for an essentially small-sample problem.

Hypothesis testing (and intermediate decision, incl. model selection) — a *steam engine* in the age of the *iPod* because it is oblivious to the consequences of the errors I and II.

Examples: 1. The Albanian long jumper Shenki Xhadni (2044);
2. Crossing the road in uptown Bendery during a Euro game.

