

March 2011, All models are wrong

Models in Material Physics Two cases without error bars

Sylvia Wenmackers, Danny E.P. Vanpoucke s.wenmackers@rug.nl

Structure of talk

Scientific models

Concepts from philosophy of science

Ellipsometry of DNA on diamond

STM of nanowires on Ge(001)

Semantics of models What do models represent?

Epistemology of modelsHow can we learn from models?

Ontology of models What are models?

Statistics

- Mathematical models
- Models of data

Material physics

- Material sample

Frigg&Hartmann in: Sarkar&Pfeifer *Phil of Sci: Encycl.* (2005)

What do models represent?

Model

- Model of phenomena
- Model of data
- & curve-fitting problem

Frigg&Hartmann in: Sarkar&Pfeifer Phil of Sci: Encycl. (2005)

How can we learn from models?

Learning via model happens in 3 steps

R.I.G. Hughes Philosophy of Science 64 (1997) S325-336

Frigg&Hartmann in: Sarkar&Pfeifer *Phil of Sci: Encycl.* (2005)

Introduction of case research question, method, and result

How reliable is the result?

Analyze experiment & calculation

- -Complex process
- -Different types of theories & models
- -Possibility of errors at each stage

Conclusion

Research question:

Angle between DNA and diamond?

S. Wenmackers et al. Langmuir 24 (2008) 7269-7277

Spectroscopic ellipsometry (UV-Vis)

Bases:

 π – π * transition bonding – anti-bonding

Model:

Optical model (three layers)

Result:

Angle between DNA and diamond

How reliable is the result?

Traditional view on models:

Model describes a target system part of reality

Our target system

- = diamond-based DNA sensor
- ⇒ something that doesn't exist (yet)

In material physics & engineering, target system may be an ideal model.

Sample = material model, iconic model represents surface of typical diamond DNA sensor

Protocol ideal model of Execution of protocol

Nanoscience: result not directly observable Additional characterization methods On actual sample or parallel sample?

Main characterization method

Main characterization method In casu, UV-Vis ellipsometry Complex apparatus connected to synchrotron

Raw data

Selection of 'good' spectra

Clean data = model of the actual data

Information on experimental method

physical theory (optics), design of apparatus

+ Information on sample

protocol, outcome of additional tests

⇒ Mathematical model

- Additional parameters: only if theory gives them physical interpretation
- Involves idealizations (flat layers) and other approximations

Different representations

Müller matrices, schematic drawing

Simulate spectra based on the mathematical model & fit to clean data

Determine α from values of best fit

Conclusions Case 1

- © Experiment was repeated: same α
 At least, method is robust ⇒
 can be used to compare sample parameters

Observe:

Even if we had computed error on α , it would only inform us of error in fit = very last step in chain

Case 2 STM of nanowires on Ge(001)

Introduction of case research question, method, and result

How reliable is the result?

Analyze experiment & calculation

- -Complex process
- -Different types of theories & models
- -Possibility of errors at each stage

Conclusion

Pt-induced nanowires on Ge(001) observed by STM

Research question:

Nature of the wires (Pt, Ge, ...)?

D.E.P. Vanpoucke & G. Brocks *Phys. Rev. B* 81 (2010) 085410

Measurement technique:

Scanning Tunneling Microscopy (STM)

Model:

Atomistic model

- Pt atoms
- Ge atoms
- Pt or Ge dimer

Result:

The nanowires are made of Ge

How reliable is the result?

Information on experimental method

quantum mechanics (QM), how STM works

+ Information on sample

Protocol (% Pt), preliminary tests

⇒ Atomistic model

Involves approximations

- approx. QM to density function theory (DFT)
- isosurface of charge density = tunneling
- periodic boundary conditions (∞ area)
- 0K, 0Pa, STM-tip = point source

Different representations

list of coordinates, schematic drawing

Simulated STM images based on various atomistic models.

Compare to experimental images.

Refine atomistic models (combine structures).

No actual fitting occurs: ab initio (from theory)

Identify best match: underlying model structure of this best-match is taken to be actual structure of the sample

Conclusions Case 2

Strong point of this case: ab initio, no statistical fitting

The result may still be wrong, e.g. if:

- all atomistic models were wrong contamination of sample, different % Pt in actual sample, just not thought of relevant configuration
- some approx. was unwarranted

Atomistic realism:

It is assumed that the atoms are spatially arranged in a specific way = right model

General conclusions

In material science, error bars may provide a false feeling of security

Material scientists tend to be realists about their models

parameters is chosen on the basis of background theory + contextual info rather than some information criterion

Thank you for your attention

