Gene Network inference for high-dimensional problems

A. Mohammadi and E. Wit

March 28, 2013
Motivation

Flow cytometry data with 11 proteins from Sachs et al. (2005)
RESULT FOR CELL SIGNALING DATA
Problem in Bayesian graph estimation

\[p(G|data) = \frac{p(G)p(data|G)}{\sum_{G \in G} p(G)p(data|G)} \]

Trans-dimensional MCMC in general

- Reversible-jump MCMC
- Birth-death MCMC

Our solution

- We proposed birth-death MCMC method for undirected graph estimation
- Implement to R: BDgraph package
Gaussian graphical model

Respect to graph $G = (V, E)$ as

$$\mathcal{M}_G = \left\{ \mathcal{N}_p(0, \Sigma) \mid K = \Sigma^{-1} \text{ is positive definite based on } G \right\}$$

Pairwise Markov property

$$X_i \perp X_j \mid X_{V \backslash \{i,j\}} \iff k_{ij} = 0,$$

$$K = \begin{bmatrix} k_{11} & k_{12} & k_{13} & 0 \\ k_{22} & 0 & 0 & 0 \\ k_{33} & k_{34} & 0 & 0 \\ k_{44} & 0 & 0 & 0 \end{bmatrix}$$
BIRTH-DEATH PROCESS

- Birth-death MCMC: Stephens (2000) in mixture models

Birth-death process in GGM

- Adding new edge in birth and deleting edge in death time
SIMPLE CASE

Graph specific element of BDMCMC method

Examples
Simple case
SIMPLE CASE

\[K = \begin{bmatrix} k_{11} & k_{12} & k_{13} & 0 \\ k_{22} & 0 & 0 \\ k_{33} & k_{34} \\ k_{44} \end{bmatrix} \]

\[K_{12}^{-} = \begin{bmatrix} k_{11}^* & k_{12}^* & k_{13}^* & 0 \\ k_{22}^* & 0 & k_{24}^* \\ k_{33}^* & k_{34}^* \\ k_{44}^* \end{bmatrix} \]
Canvergency

Preston (1976): Backward Kolmogorov
Under Balance condition, process converges to unique stationary distribution.

Mohammadi and Wit (2013): BDMCMC in GGM
Stationary distribution = Posterior distribution of (G,K)
So, relative sojourn time in graph $G = p(G|data)$
Proposed BDMCMC Algorithm

Step 1: (a). Calculate birth and death rates

\[\beta_{\xi}(K) = \lambda_b, \quad \text{new link } \xi = (i, j) \]

\[\delta_{\xi}(K) = \frac{b_{\xi}(k_{\xi}) p(G^-_{\xi}, K^-_{\xi} | x)}{p(G, K | x)} \lambda_b, \quad \text{existing link } \xi = (i, j) \]

(b). Calculate waiting time,

(c). Simulate type of jump, birth or death

Step 2: Sampling new precision matrix: \(K^+_\xi \) or \(K^-_\xi \)
PROPOSED PRIOR DISTRIBUTIONS

Prior for graph

- Discrete Uniform
- Truncated Poisson according to number of links

Prior for precision matrix

- G-Wishart: \(W_G(b, D) \)
 \[
p(K|G) \propto |K|^{(b-2)/2} \exp \left\{ -\frac{1}{2} tr(DK) \right\}
 \]
 \[
 I_G(b, D) = \int_{\mathcal{P}_G} |K|^{(b-2)/2} \exp \left\{ -\frac{1}{2} tr(DK) \right\} dK
 \]
Computing Death Rates

\[
\delta_{\xi}(K) = \frac{I_G(b, D)}{I_{G_{\xi}}(b, D)} \left(\frac{|K - \xi|}{|K|} \right)^{(b^* - 2)/2} \exp \left\{ -\text{tr}(D^*(K-\xi - K))/2 \right\} \gamma_b
\]

\[
\frac{I_G(b,D)}{I_{G-\xi}(b,D)} = 2\sqrt{\pi} t_{ii} t_{jj} \frac{\Gamma((b+\nu_i)/2)}{\Gamma((b+\nu_i - 1)/2)} \frac{E_G[f_T(\psi^\nu)]}{E_{G-\xi}[f_T(\psi^\nu)]}
\]
BDgraph package

- Graph estimation for high-dimensional cases
- Graph estimation for low-dimensional cases
Simulation: 8 Nodes

\[M_G = \{ N_8(0, \Sigma) | K = \Sigma^{-1} \in \mathbb{P}_G \} \]

\[
K = \begin{bmatrix}
1 & .5 & 0 & 0 & 0 & 0 & 0 & .4 \\
1 & .5 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & .5 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & .5 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & .5 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & .5 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & .5 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & .5 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
SOME RESULT

Effect of Sample size

<table>
<thead>
<tr>
<th>Number of data</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(\text{true graph} \mid \text{data})$</td>
<td>0.018</td>
<td>0.067</td>
<td>0.121</td>
<td>0.2</td>
<td>0.22</td>
<td>0.35</td>
</tr>
<tr>
<td>false positive</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>false negative</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Diagrams](image_url)
Simulation: Circle graph with 120 nodes

$$
\mathcal{M}_G = \left\{ \mathcal{N}_{120}(0, \Sigma) | K = \Sigma^{-1} \in \mathbb{P}_G \right\},
$$

- $n = 2000 \ll 7260$
- Priors: $K \sim W_G(3, I_{120})$ and $G \sim TU$ (all possible graphs)
- 10000 iterations and 5000 iterations as burn-in

Result

- Time: 4 hours
- $p(\text{true graph} \mid \text{data}) = 0.09$ which is most probable graph
SUMMARY