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Abstract— We consider here the problem of finding a con-
troller for a system such that when interconnected to the plant,
we get a system which is bisimilar to the desired system. We
give necessary and sufficient conditions for the existence of such
a controller. The systems we consider are ordinary linear time
invariant dynamical systems described by state space equations.
We briefly compare our results with similar results in the
behavioral approach to systems’ theory. The advantage of using
the notion of bisimilarity is that it applies to state space systems
and the computations involved are operations on real matrices.
Keywords: Linear systems, bisimulations, achievability, canon-
ical controller.

I. INTRODUCTION

A common question in systems and control theory is the
following: given a plant, can one suitably alter it so that we
have a modified system that suits our needs. We achieve this
objective by constructing another system called a ‘controller’
and interconnecting/‘attaching’ this to the plant so that the
new interconnected system has the desired dynamics. Now, to
decide whether the interconnected system indeed does have
the desired dynamics, we need some notion of equivalence
between systems. For state space systems, one would call two
systems equivalent if they are related by an invertible state
space transform (also called the similarity transform). In the
‘behavioral’ approach, two systems are equivalent if the be-
haviors are equal. A notion that is used in computer science
is that of bisimulation. This notion has been used to study the
equivalence of automata. The idea of a bisimulation has been
extended to include continuous time dynamical systems (see
[Pap03], [vdS04]). It has been found that this notion actually
is stronger than the idea of behavior equality. Moreover,
it inherently uses the concept of a state and combines the
ideas of behavior equivalence and state space equivalence.
In this paper we use this notion of equivalence between
systems. For deterministic systems (i.e. without disturbances)
bisimulation reduces to the idea of behavioral equivalence.
For two state space systems which are controllable and
observable, equivalence in the sense of bisimulations and
state space equivalence are the same. Furthermore, any state
space system is bisimilar to its minimal realization. Thus
equivalence in the sense of bisimulations is more general.
Moreover, it is a good blend (as we will see later) of state
space equivalence and input-output behavior equality. Also,
the definition of bisimulation is easily extendable to non-
linear systems (see [vdS04]).

In the rest of the paper, we establish necessary and
sufficient conditions which allow us to decide whether there
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exists a controller which when interconnected to the plant,
yields a system which is bisimilar to the desired system.
Similar issues have been addressed for more general abstract
state systems in [PvdSB05]. The paper is organized as
follows: In section II we introduce bisimulations and relevant
results needed in the paper. Section III states the problem and
provides necessary and sufficient conditions for existence of
a solution to the problem. Finally we conclude with some
future directions.

II. DEFINITIONS

We now state precisely the notion of bisimulation for
continuous time linear time invariant systems as introduced
in [vdS04]. Consider two dynamical systems described by
the following equations.

ẋi = Aixi + Bu
i ui + Bf

i fi, xi ∈ Xi, ui ∈ U
yi = Cy

i xi, yi ∈ Y
zi = Cz

i xi, zi ∈ Z
(1)

where i = 1, 2, and each system is denoted by Σi. xi is the
state of the system and takes values in Xi, ui is an input
vector in U , fi is also an input vector and, yi and zi are
output vectors in Y and Z respectively. All the variables
take values in finite dimensional linear spaces.

Definition 1: A bisimulation relation between two linear
systems Σ1 and Σ2 with respect to the variables fi and zi

is a linear subspace

R ⊂ X1 ×X2

with the following property. Take any (x10, x20) ∈ R and
any joint input function f1 = f2. Then, for any input function
u1 there should exist an input function u2 such that the
resulting state trajectories x1(t) with x1(0) = x10 and x2(t)
with x2(0) = x20 satisfy

(x1(t), x2(t)) ∈ R for all t ≥ 0 (2)
z1(t) = z2(t) for all t ≥ 0 (3)

and conversely, for any input function u2 there should exist
a function u1 such that the state trajectories x1(t) and x2(t)
satisfy (2) and (3).
Note that in the definition of a bisimulation relation with
respect to the variables f and z, the output yi does not play
any role. However, it is used when we interconnect the plant
to a controller (u and y are the variables available to the
controller). Besides, the set of pair of states x and inputs f ,
resulting in the same output y in the plant, play an important
role in proving the main result.



A bisimulation relation can be explicitly characterized by
conditions involving the matrices describing the two systems
(see [vdS04]).

Proposition 2: Let Σ1 and Σ2 be two systems of the
form given in equation (1). A subspace R ⊆ X1 × X2 is
a bisimulation relation if and only if the following are true:

R+ im

[
Bu

1

0

]
= R+ im

[
0

Bu
2

]
=: Re

[
A1 0
0 A2

]
R ⊆ Re

im

[
Bf

1

Bf
2

]
⊆ Re

R ⊆ ker
[
Cz

1 −Cz
2

]

(4)

Definition 3: Two systems Σ1 and Σ2 are said to be
bisimilar, denoted Σ1 ≈ Σ2, if there exists a bisimulation
relation R ⊂ X1 × X2 such that π1(R) = X1 and π2(R) =
X2, where πi : X1×X2 → Xi, i = 1, 2, denote the canonical
projections. Such a bisimulation relation is called a “full”
bisimulation relation.

A weaker notion called ‘simulation’ is also defined.
Definition 4: A simulation relation of Σ1 by Σ2 is a linear

subspace
S ⊂ X1 ×X2

with the following property. Take any (x10, x20) ∈ R and
any joint input function f1 = f2. Then, for any input function
u1 there should exist an input function u2 such that the
resulting state trajectories x1(t) with x1(0) = x10 and x2(t)
with x2(0) = x20 satisfy

(x1(t), x2(t)) ∈ R for all t ≥ 0 (5)
z1(t) = z2(t) for all t ≥ 0 (6)

Analogous to the conditions for bisimulations, we have:
A subspace S ⊆ X1 × X2 is a simulation relation of Σ1 by
Σ2 if and only if the following are true

S + im

[
Bu

1

0

]
⊆ S + im

[
0

Bu
2

]
=: Se

[
A1 0
0 A2

]
S ⊆ Se

im

[
Bf

1

Bf
2

]
⊆ Se

S ⊆ ker
[
Cz

1 −Cz
2

]

(7)

Definition 5: System Σ1 is said to be simulated by system
Σ2, denoted by Σ1 4 Σ2, if there exists a simulation relation
S of Σ1 by Σ2 such that Π1(S) = X1. Such a simulation
relation is called a “full” simulation relation of Σ1 by Σ2.

The following lemma shows that 4 is transitive.
Lemma 6: Let Σ1, Σ2 and Σ3 be three systems of the

form of equation (1). If Σ1 4 Σ2 and Σ2 4 Σ3, then Σ1 4
Σ3.
We state one more proposition from [vdS04] which will be
useful for proving the main result.

Proposition 7: Let S ⊂ X1 × X2 be a full simulation
relation of Σ1 by Σ2 and T ⊂ X2 ×X1 be a full simulation
relation of Σ2 by Σ1. Then Σ1 ≈ Σ2 where the full

bisimulation relation is give by S + T −1, with T −1 =
{(xa, xb)|(xb, xa) ∈ T }.

The maximal (bi-)simulation relations exist and can be
computed. We state a constructive algorithm (see [vdS04])
for computing the maximal simulation of Σ1 by Σ2 where
Σ1 and Σ2 are of the form given in equation (1). The
algorithm is very similar to the algorithm used to find the
maximal controlled invariant subspace contained in given
subspace (see [Won85]) of the state space; this algorithm
also terminates in a finite number of steps.

Let A =
[
A1 0
0 A2

]
, G1 =

[
Bu

1

0

]
, G2 =

[
0

Bu
2

]
and C =

[
Cz

1 −Cz
2

]
. Consider the following descending sequence of

subspaces Rj :

S0 = X1 ×X2

S1 = {z ∈ S0|z ∈ kerC}
S2 = {z ∈ S1|Az + imG1 ⊂ S1 + imG2}

.

.

.

Sj+1 = {z ∈ Sj |Az + imG1 ⊂ Sj + imG2}
The algorithm terminates when Sj = Sj+1. It can be proved
that the termination occurs in a finite number of steps (bound
by the dimension of S0) to yield the maximal simulation
relation (see [vdS04]). The algorithm for computing a bisim-
ulation relation is similar. The above algorithm for simulation
relations can be used to verify the necessary and sufficient
condition derived in the next section.

III. MAIN RESULT

We now formulate the problem statement precisely. Let P
denote the plant and C the controller system. Let S denote
the desired system. P , C and S are all represented as state
space systems with states xP , xC and xS respectively. P has
inputs fP and uP and outputs zP and yP . The controller
shares the variables y and u with the plant; that is, only the
variables u and y can be influenced by the controller. S has
input fS and output zS . The plant is represented as

ẋP = AP xp + Bu
P uP + Bf

P fP[
zP

yP

]
=

[
Cz

P

Cy
P

]
xP

(8)

XP denotes the state space of P .
We define the system N as follows: Setting uP and yP to

zero in the plant we get the following system,

ẋP = AP xP + Bf
P fP[

zP

0

]
=

[
Cz

P

Cy
P

]
xp

(9)

The state space for this system equals the largest (AP , Bf
P )-

invariant subspace (see [Won85]) contained in kerCy
P ; we

denote it by XN . The explicit equations for the dynamics of
N are given as follows:

ẋP = (AP + Bf
P F )xP + Bf

P Lw (10)



where F is such that (AP + Bf
P F )XN ⊂ XN , xP (0) ∈

XN and L is such that im(L) = imBf
P ∩XN . Now use a

basis adapted to XN so that only the first few components of
the state vector are non-zero in XN . This yields an explicit
expression for N .

Remark 8: Any input in N is given as FxP + Lw
where w can take any arbitrary value in the function space
considered. We denote this set of inputs by F . Observe that
F is in general not the whole function space. ¤

S is represented as

ẋS = ASxS + Bf
SfS

zS = Cz
SxS

(11)

Let XS be the state space for S.
P ‖ C is the system obtained when the variables u and
y are shared by the two systems, i.e., u and y satisfy the
equations of the plant P as well as of the controller C.
Let (uP , yP ) be the variables that are available for control
in the plant and (uC , yC) the variables in the controller
which we interconnect with the plant variables (uP , yP ).

Then
[
uP

yP

]
= Π

[
uC

yC

]
where Π is a square permutation

matrix (we choose controllers with the same number of
control variables as those of the plant). Note that as a result
of the interconnection the state space of the interconnected
system may be smaller than the product space XP × XC .
The equations for P ‖ C are given by

ẋP = AP xP + Bu
P uP + Bf

P fP[
zP

yP

]
=

[
Cz

P

Cy
P

]
xP

ẋC = ACxC + Bu
CuC + BCg[

hC

yC

]
=

[
Cz

C

Cy
C

]
xC

subject to the constraint[
uC

yC

]
= Π

[
uP

yP

]

where Π is a permutation matrix as mentioned earlier and
g and hC are additional variables in the controller that are
not available for interconnection with the plant. We are now
ready to state the problem.
Problem statement: Given P and S, find necessary and
sufficient conditions for the existence of a controller C such
that P ‖ C is bisimilar to S.

Theorem 9: (N 4 S 4 P )⇔ (∃C such that P ‖ C ≈ S).
Before proving this theorem let us first make some com-
ments. For proving the necessity, we must allow for any
kind of interconnection, since we do not a priori know how
the plant and controller are interconnected, i.e., we do not
know the permutation matrix Π . For proving sufficiency
however, we have to construct our own controller and hence
can choose the kind of interconnection.

The existence of N 4 S plays a key role in proving that
the controller we construct is actually one that achieves the
desired specification S up to bisimulation. This is analogous
to a similar result that has been proved in the behavioral

approach, where the relation 4 is replaced by a set inclusion
⊆ (see [WT02]). However, here we take explicit account
of the state of the system as against the purely behavioral
approach. Let RSP denote the maximal simulation relation
of S by P and similarly let RNS be the maximal simulation
relation of N by S.
It is worth while noting that the condition N 4 S 4 P

P S

f

z

u

y

Fig. 1. The canonical controller

can actually be computationally checked without too much
difficulty using the algorithm stated in the previous section.
The condition S 4 P can be checked by directly applying
the algorithm since we have explicit expressions of S and P .
Checking N 4 S requires some more work as we have to
compute the explicit equations for N as in (10). Having done
so, we can then apply the algorithm to compute the maximal
simulation relation of N by S. as follows: The inputs allowed
in N are given as FxP + Lw. Setting the input to this and
writing the equations for computing N 4 S we have (see
equation (10))

[
ẋP

ẋS

]
=

[
AP + Bf

P F 0
Bf

SF AS

] [
xP

xS

]

+
[

Bf
P L

Bf
SFL

]
w

[
Cz

P −Cz
S

Cy
P 0

] [
xP

xS

]
=

[
0
0

]
=: CNS

[
xP

xS

]
(12)

Let ANS and BNS denote the A and B matrices for the
above equation. RNS is then the largest ANS−invariant
subspace contained in kerCNS such that imBNS ⊂ RNS .
Thus N 4 S can be checked.

In order to prove theorem III we define one more in-
terconnection viz. the canonical controller (see figure 1).
The canonical controller was introduced in [vdS03] in a
behavioral setting. Here we use the same idea, but for
state space systems. Denote Ccan = P ‖ S where the
interconnection is with respect to the variables f and z. The
equations governing the dynamics of Ccan are given by,

[
ẋS

ẋP

]
=

[
AS 0
0 AP

] [
xS

xP

]
+

[
Bf

S

Bf
P

]
f +

[
0

Bu
P

]
u

[
Cz

S −Cz
P

] [
xS

xP

]
= 0

y =
[
0 Cy

P

] [
xS

xP

]

(13)



Let the A-matrix of the above system be denote by Acan

and the matrix
[
Bf

S 0
Bf

P Bu
P

]
as Bcan. The state space Xcan

for Ccan is defined as the largest (Acan, Bcan) invariant
subspace contained in ker

[
Cz

S −Cz
P

]
.

Lemma 10: RSP ⊆ Xcan

Proof : As defined, Xcan is the largest subspace R such that

AcanR ⊆ R + imBcan

R ⊆ ker
[
Cz

P −Cz
S

]

On the other hand, the maximal simulation relation of S by
P is given by the largest subspace R̄ such that

AcanR̄ ⊆ R̄ + im

[
0

Bu
P

]

R̄ ⊆ ker
[
Cz

P −Cz
S

]

im

[
Bf

S

Bf
P

]
⊆ R̄

Since im

[
Bf

S

Bf
P

]
⊆ R̄, R̄ also satisfies the conditions defining

R. Thus RSP ⊆ Xcan. ¤

We now prove theorem 9.
Proof : (⇐:) Since P ‖ C ≈ S, by lemma 6 it is sufficient
to show that P ‖ C is simulated by P and itself simulates
N . Let (xP , xC) be an initial state in P ‖ C. Let f be
some input and uPC the signal u that evolves with time in
P ‖ C. Let zPC be the corresponding output that evolves
with time. Now consider a stand alone plant (i.e. without
controller attached) with initial state xP with input f and
input u = uPC . The output zP is uniquely determined by
the initial state and the inputs. Since these are the same for
the plant in the interconnection and the stand alone plant that
we have considered, zP = zPC . The above argument is true
for any state in P ‖ C. The simulation relation of P ‖ C by
P is thus given by

{(a, b, c) ∈ XP ×XC ×XP |a = c and (a, b) ∈ XPC}
Now consider N . Let xN be any state in N and f ∈ F ;

see remark 8. By the definition of N , the output yN will be
zero; let zN be the output corresponding to state xN . Now,
choose the state (xN , 0) in P ‖ C with input f . (Given the
initial state and input, the state trajectory is uniquely defined.
Since uP = 0, yP = 0 and xC = 0 satisfy the system
equations, this is the only possible set of signals.) Due to
the state (xN , 0), the input and output to the controller will
be zero and its state trajectory will be identically zero. Thus
the output zPC in P ‖ C is determined uniquely by the state
xN and input fP of the plant. Since uP = yP = 0, and
xN ∈ XN , zPC = zN . This argument holds true for any
state in N . The simulation relation of N by P ‖ C is given
by

{(a, b, c) ∈ XN ×XP ×XC |a = b and c = 0}
We now prove the other direction of the claim:
(⇒:) We now have to construct a controller C and show

that P ‖ C is bisimilar to S. For this we construct the
‘canonical controller’.

1. We define the system Ccan = P ‖ S with state space
Xcan ⊂ XS×XP , input fcan(fcan = fS = fP ), input ucan,
output ycan and zS = zP . (Intuitively, S and P share the z
variable and we allow only those combinations of the states
in XP and XS which ensure that zS = zP .) Note that since
S 4 P , for all xS ∈ XS , ∃xP ∈ XP such that for fS = fP ,
∃u such that zS = zP . Let RSP be the simulation relation.
The existence of RSP together with lemma 10 ensures that
there exist states and inputs for which the interconnection is
not ill-posed.

2. Now consider the interconnection of Ccan and P
obtained by setting uP = ucan and yP = ycan. We denote
the output z of P by zpcan. Note that we are equating the
outputs of two systems (yP = ycan). As a result the state
space of Ccan ‖ P may not be the whole product space
Xcan×XP . The states πP Xcan and xP should be such that
yP = ycan. Moreover fP and fcan are not entirely ‘free’
inputs and are related. To characterize such states and the
relation between the inputs, we state the following lemma.

Lemma 11: Let xP , x′P ∈ XP with input fP and f ′P
respectively. Then, for the same input uP , yP = y′P if and
only if xP − x′P ∈ XN and fP − f ′P ∈ F .
Proof : The output due to initial state xp, and inputs u and
f is

yP (t) = Cy
P e(AP t)xP + Cy

P

∫ t

0

e(AP (t−τ))BP
f fP (τ)dτ

+ Cy
P

∫ t

0

e(AP (t−τ))BP
u uP (τ)dτ

(14)

The output due to state x′P and input f ′P is obtained by
replacing xP by x′P and likewise fP by f ′P in the above
equation (because input uP is the same).
(⇒): Subtracting the output due to xP and x′P we get

0 = Cy
P e(AP t)(xP − x′P )

+ Cy
P

∫ t

0

e(AP (t−τ))BP
f (fP (τ)− f ′P (τ))dτ

(15)

Thus (xP − x′P ) ∈ XN and fP − f ′P ∈ F .
(⇐): Given (xP −x′P ) ∈ XN and fP −f ′P ∈ F , subtracting
the expressions for outputs yP and y′P , we get zero. (because
input uP is the same). ¤

Thus the states allowed in Ccan ‖ P are a subset of
Xcan×Xp such that πP Xcan−π2(Xcan×XP ) ∈ XN where
π2(RSP ×XP ) is the projection on the second component
of the state space of Ccan ‖ P . Also, fP − fcan ∈ F .

We will now prove the other direction of the claim by
showing that
• S 4 Ccan ‖ P
• Ccan ‖ P 4 S

Proving these two statements is equivalent (see proposition
7) to proving that S and Ccan ‖ P are bisimilar.
S 4 Ccan ‖ P : Let xS ∈ XS and fS be the corresponding



input. Choose the state of Ccan ‖ P as ((xS , xP ), xP ) where
(xS , xP ) ∈ RSP and select fP = fcan = fS . Note that this
is allowed because the zero state with corresponding input
fP = 0 is valid pair of (xN , fP ) in N . The output zS and
zpcan will be the same. The simulation relation is given by

{(a, b, c, d) ∈ XS ×XS ×XP ×XP |
a = b, c = d and (b, c) ∈ RSP }.

Ccan ‖ P 4 S: Let ((xS , xP ), x′P ) be any state in Ccan ‖ P .
Then we can write x′P = xP +xN for some state xN ∈ XN

(by the result proved above). Choose state xS + x′S in S
where (xN , x′S) ∈ RNS where Rns is the simulation relation
between N and S. Thus the state of Ccan ‖ P × Xs that
we have chosen is (((xS , xP ), xP + xN ), xS + x′S) which
can be written as (((xS , xP ), xP ), xS) + (((0, 0), xN ), x′S).
Further, we can write fP = fcan + fN where fN ∈ F . The
output zS = zpcan for both states. Since the system is linear,
the output due the sum of the states is also the same. The
simulation relation is given by

{(a, b, c, d) ∈ XS ×XP ×XP ×XS |
(a, b) ∈ Xcan, c− b ∈ XN and ((c− b), (d− a)) ∈ RNS}

This proves the result. ¤

IV. EXAMPLE

We present here a mathematical example to illustrate the
main theorem.

Consider a plant given by

ẋ1
P = x1

P + x2
P + uP

ẋ2
P = x1

P + x2
P + f

yP = x2
P

zP = x1
P

Let S be given by

ẋ1
S = x1

S + x2
S + bx3

S

ẋ2
S = x1

S + x2
S + f

ẋ3
S = ax2

S

zS = x1
S

where a and b are non-zero real numbers. The state space
of N is found to be the span of

[
1 0

]′. Note that XN ∩
imBf

P = 0. Therefore, f is uniquely determined; in fact
f = −x1

P . Thus, the equations for N are

ẋ1
P = x1

P

zP = x1
P

where xP ∈ XN . Consider any state x1
P (0) in N . Choose

state x2
S(0) = 0 and x3

S(0) = 0 in S with fS = −x1
S where

x1
S(0) = x1

P (0). Then the equations for S reduce to

ẋ1
S = x1

S

zS = x1
S

Thus N 4 S.

Now, consider S with any initial state with input fS . Set
fP = fS . Choose x1

P (0) = x1
S(0), x2

P (0) = x2
S(0) and

uP = bx3
S(t). Then it is clear that zP = zS . Thus S 4 P .

Hence, by theorem 9, there exists a controller which
when interconnected with the plant yields a system which
is bisimilar to S. We can see this as follows: Choose a
controller given by

ẋC = auC

yC = bxC

subject to
yP = uC

yC = uP

(16)

Using this as the controller it is easily seen that we get a
system bisimilar to S. Interestingly enough, we can actually
arrive at the same controller using the canonical controller.
The equations for the canonical controller are as follows:

ẋ1
P = x1

P + x2
P + uP

ẋ2
P = x1

P + x2
P + f

ẋ1
S = x1

S + x2
S + bx3

S

ẋ2
S = x1

S + x2
S + f

ẋ3
S = ax2

S

yP = x2
P

subject to the constraints

x1
P = zP = zS = x1

S

fP = fS

Now, let us impose an additional constraint x2
P = x2

S . The
first and third equation (together with the other constraints)
yield uP = bx3

S . Further, the second and the fourth equation
become the same equation. Eliminating redundant equations
and ignoring equations that are present in the plant equations
we get,

ẋ3
S = ayP

uP = bx3
S

Observe that these are precisely the equations of the con-
troller in equation (16).

V. CONCLUSION

We have derived necessary and sufficient conditions for
the existence of a controller C such that P ‖ C ≈ S namely
N 4 S 4 P . The condition S 4 P is expected. The critical
condition is N 4 S. This condition enables us to prove
sufficiency. Moreover, the conditions derived can be verified
computationally.

Although elegant, the canonical controller may not be very
useful in practice. One reason is that it is not likely to be
regular, i.e., we may not be able to connect it to the plant
in such a way that inputs of the plant are connected to the
outputs of the controller and vice versa. Also, the canonical
controller is generally of a high state space dimension and
is in a sense redundant (i.e. contains a copy of the plant and
the desired system).



Despite these apparent drawbacks, a result in the be-
havioral approach (see [JPvdS08]) indicates that regular
implementability can be characterized using the canonical
controller. It will hence be fruitful to look for a similar
condition in terms of simulation relations.
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