Secular and oscillatory motions in dynamical systems

Henk Broer
Johann Bernoulli Instituut voor Wiskunde en Informatica
Rijksuniversiteit Groningen
1. Toroidal symmetry
2. Secular (slow) versus oscillatory (rapid)
3. Structures in slow dynamics
4. Examples & Conclusions

Action-angle variables given $H : \mathbb{R}^2 \rightarrow \mathbb{R}$

$$\dot{q} = \frac{\partial H}{\partial q}, \quad \dot{p} = -\frac{\partial H}{\partial p}$$

Define $A := A(H)$, then $T = \frac{dA}{dH}$,

$I := \frac{1}{2\pi} A, \ \varphi := \frac{T}{2\pi} t \leadsto$

$$\dot{I} = 0, \quad \dot{\varphi} = \omega(I),$$

$$\omega(I) = \frac{dH_0}{dI}(I)$$

General format of perturbation in n dof:

$$\dot{\varphi} = \omega(I) + \varepsilon f(I, \varphi), \quad \dot{I} = \varepsilon g(I, \varphi)$$

where $H = H_0 + \varepsilon H_1, \ \omega(I) = \frac{dH_0}{dI}, \ f = \frac{\partial H_1}{\partial I}, \ \text{and} \ g = -\frac{\partial H_1}{\partial \varphi}$

Perturbation problems as usual
Integrability for $\varepsilon = 0$
Examples: 1 dof systems, central force field, Lagrange top, geodesics on ellipsoid, combinations of the above, ...

Near integrability occurs persistently: think of Solar system as a perturbation of a number of uncoupled central force systems (Kepler, Newton)
Also in small neighbourhood of elliptic equilibrium points (see below ...)

Slow-fast dynamics: I–slow (secular), φ–fast (oscillatory)
Local theory at $0 \in \mathbb{R}^{2n} = \{p, q\}$

Birkhoff normal form at equilibrium

$$H(p, q) = \frac{1}{2}\langle \omega, (p^2 + q^2) \rangle + F(p^2 + q^2) + G(p, q)$$

with $\sigma = dp \wedge dq$, $F = O(4)$ and $G = O(N + 1)$ (N depends on non-resonance properties of ω)

Define $q = \sqrt{2I} \sin \varphi, p = \sqrt{2I} \cos \varphi$, then $p^2 + q^2 = 2I$, $\sigma = dI \wedge d\varphi$ and

$$H(I, \varphi) = \langle \omega, I \rangle + F(I) + G(I, \varphi)$$

\Rightarrow system

$$\dot{\varphi} = \omega + \frac{\partial F}{\partial I} + \frac{\partial G}{\partial I}, \quad \dot{I} = -\frac{\partial G}{\partial \varphi}$$

where G is small whenever I is

Locally same perturbation problem
Proofs: by action of adjoint operator

\[\omega \left(p \frac{\partial}{\partial q} - q \frac{\partial}{\partial p} \right) \]

on homogeneous parts of Taylor series

Simplification leaves only terms in kernel

Resonant examples later

Similar theory near periodic solutions,

action by, e.g.,

\[\alpha \frac{\partial}{\partial t} + \omega \left(p \frac{\partial}{\partial q} - q \frac{\partial}{\partial p} \right) \]

and analogously near quasi-periodic tori
A simple Averaging Theorem

Given a (general) 2π–periodic system

\[
\dot{\varphi} = \omega(I) + \varepsilon f(\varphi, I), \quad \dot{I} = \varepsilon g(\varphi, I), \quad (\varphi, I) \in \mathbb{T}^1 \times \mathbb{R}^n
\]

Suitable near-identity transformation $(\varphi, I) \mapsto (\varphi, J) \leadsto \text{truncating at order } O(\varepsilon^2)$

\[
\dot{J} = \varepsilon \bar{g}(J) \text{ where }
\]

\[
\bar{g}(J) = \frac{1}{2\pi} \int_0^{2\pi} g(\varphi, J) d\varphi
\]

Theorem: If $\omega(J) > 0$ is bounded away from 0, then, for a constant $c > 0$

\[
|I(t) - J(t)| < c\varepsilon \text{ for } 0 \leq t \leq \frac{1}{\varepsilon}.
\]
Proof

Any transformation

\[J = I + \varepsilon k(\varphi, I) \Leftrightarrow I = J + \varepsilon h(J, \varphi, \varepsilon) \]

\[\Rightarrow \]

\[\dot{J} = \dot{I} + \varepsilon \frac{\partial k}{\partial I} \dot{I} + \varepsilon \frac{\partial k}{\partial \varphi} \dot{\varphi} \]

\[= \varepsilon \left(g(\varphi, I) + \frac{\partial k}{\partial \varphi} \omega(I) \right) + O(\varepsilon^2) \]

Define

\[k(\varphi, I) = -\frac{1}{\omega(I)} \int_0^{2\pi} (g(\varphi, I) - \bar{g}(I)) d\varphi, \]

then

\[\dot{J} = \varepsilon \bar{g}(I) + O(\varepsilon^2) = \varepsilon \bar{g}(J) + O(\varepsilon^2) \]
Extensions to many classes of systems, for instance to Hamiltonian systems

Generalization to the immediate vicinity of a quasi-periodic torus

Further normalization give estimates that are polynomial or exponential in ε (in real analytic case)

Passage through resonance: then condition on ω not valid.

Application of Averaging Theorem

Hamiltonian time dependent, slowly varying system

\[\dot{\varphi} = \omega(I, \lambda) + \varepsilon f(I, \varphi, \lambda), \quad \dot{I} = \varepsilon g(I, \varphi, \lambda), \quad \dot{\lambda} = \varepsilon \]

where \((\varphi, I, \lambda) \in T^1 \times \mathbb{R} \times \mathbb{R}\)

Compare with averaged system

\[\dot{J} = \varepsilon \bar{g}(J), \quad \dot{\Lambda} = \varepsilon \]

Hamiltonian character gives \(\bar{g} \equiv 0\), hence

\[|I(t) - I(0)| < c \varepsilon \text{ for } 0 \leq t \leq \frac{1}{\varepsilon} \]

\(\therefore I\) is adiabatic invariant
Planck’s: In the above take

\[H(p, q, \ell) = \frac{p^2}{2\ell^2} + \ell g \frac{q^2}{2} \text{ with } \dot{\ell} = \varepsilon \]

Energy level \(H(p, q, \ell) = E \) is ellipse: axes \(a = \ell \sqrt{2E} \) and \(b = \sqrt{2E/\ell g} \)

Then action variable

\[I = \frac{1}{2\pi} A = \frac{1}{2\pi} \pi ab = \frac{E}{\sqrt{g \ell}} = \frac{E}{\nu} \]

Laplace (more degrees of freedom) semi-major axes of Keplerian ellipses of the planets have no secular variations

KAM theory and adiabatic invariants: 2 dof versus more; Arnold diffusion . . .
Consider time periodic Hamiltonian (swing)

\[H_{\alpha,\beta}(p, q, t) = \frac{1}{2}p^2 + (\alpha^2 + \beta \cos t)(1 - \cos q) \]

where \((p, q) \approx (0, 0)\) and \((\alpha, \beta) \approx (\frac{1}{2}, 0)\)
(near 1 : 2 resonance; \((p, q, t) \in \mathbb{R} \times T^1 \times T^1)\)

Two reversibilities: \(R(p, q, t) = (-p, q, -t)\) and \(S(p, q, t) = (p, -q, -t)\)

Complex notation \(z = p + \frac{1}{2}i q \leadsto\)

\[\dot{z} = \frac{1}{2}iz - (\delta + \beta \cos t) \sin q - \frac{1}{4}(\sin q - q) \]
\[\dot{t} = 1 \]

where \(\delta = \alpha^2 - \frac{1}{4}\) detunes the 1 : 2 resonance

Normalization/averaging (resonant) as described before

Double cover given by map

\[\Pi : \mathbb{C} \times \mathbb{R} / (4\pi \mathbb{Z}) \rightarrow \mathbb{C} \times \mathbb{R} / (2\pi \mathbb{Z}) \]

\[(\zeta, t) \mapsto (\zeta e^{\frac{1}{2}it}, t \mod 2\pi) \]

Deck transformation \((\zeta, t) \mapsto (\zeta e^{\pi i}, t - 2\pi)\)

Symmetry induced by reversions \(R\) and \(S \sim \mathbb{Z}_2 \oplus \mathbb{Z}_2\)-symmetry (all compatible)

Takens normal form Poincaré map

\[P_{\alpha,\delta}(\zeta) = (-\text{Id}) \circ N_{\alpha,\delta}^{2\pi}(\zeta) + \text{h.o.t.}(\zeta, \alpha, \delta) \]

Singularity theory describes planar Hamilton functions of \(N_{\alpha,\delta}\) in ‘generic’ setting

Similarly for the other \(k : 2\) resonances
Bifurcation diagram of $N_{\alpha,\delta}$: showing the slow or secular dynamics near $1:2$ resonance
Poincaré map $P_{\alpha,\beta}$ for $\alpha \approx \frac{1}{2}$ and $\beta \approx .4$

toy model for botafumeiro (Santiago de Compostela)

coeexistence of periodicity, quasi-periodicity and ‘chaos’
Swing forced with fixed ω_1 and ω_2:

$$H_{\alpha,\beta,\omega_1,\omega_2}(p, q, t) = \frac{1}{2}p^2 + (\alpha^2 + \beta(\cos(\omega_1 t) + \cos(\omega_2 t)))(1 - \cos q)$$

gives on $T^2 \times \mathbb{R}^2$ system

$$\dot{\varphi}_1 = \omega_1, \quad \dot{\varphi}_2 = \omega_2$$
$$\dot{q} = p, \quad \dot{p} = -(\alpha^2 + \beta(\cos \varphi_1 + \cos \varphi_2)) \sin q$$

Resonances given by

$$k_1\omega_1 + k_2\omega_2 + \ell\alpha = 0,$$

for $k_1, k_2, \ell \in \mathbb{Z}$

If ω_1, ω_2 are rationally independent, then dense set of α-values
A dense set of resonances

Arnold resonance tongues as these occur in many contexts
Diophantine conditions: For given $\tau > 1$ and $\gamma > 0$

$$|k_1 \omega_1 + k_2 \omega_2 + \ell \alpha| \geq \gamma(|k_1| + |k_2|)^{-\tau},$$

for all $(k_1, k_2) \in \mathbb{Z} \setminus \{(0, 0)\}$ and for all $\ell \in \mathbb{Z}$ with $|\ell| \leq N$

Nowhere dense, large positive measure (for small γ)

Normalized system (need Diophantine conditions) has same planar vector field truncation $N_{\alpha,\beta}$ as before; same secular motion as before

H. Hanßmann, *Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems* Results and Examples, LNM 1893 Springer 2007
Model for quasi-periodic center-saddle bifurcation

\[H_\lambda(\varphi, I, p, q) = \langle \omega, I \rangle + \frac{1}{2}p^2 + (\lambda q - q^3) + \text{h.o.t.}(p, q, \lambda) \]

‘Cantorized’ fold: for \(q < 0 \) hyperbolic 2-tori occur and for \(q > 0 \) elliptic 2-tori
Universal model, in particular robust
Many further models in

Co-existing dynamics with periodicity and chaos in gaps;
often infinite regress inside gaps

Oxtoby ‘paradox’ nowhere dense versus positive measure
meagre versus full measure

Principle: mix of Singularity Theory and Kolmogorov Arnold Moser Theory
Dissipative analogues

Same idea of oscillatory versus secular dynamics, normalizing/averaging the former away

Periodic attractors and Cantorized families of quasi-periodic attractors of positive measure in parameter space

Hopf-Neĭmark-Sacker bifurcation between them

Quasi-periodic Hopf bifurcation from n- to $(n + 1)$-tori

Onset of turbulence: Hopf-Landau-Lifschitz-Ruelle-Takens in generic families co-existence of periodicity, quasi-periodicity (of positive measure in parameter space) and chaos (often idem dito)

Cantorized fold diagram also for bifurcations of diffeomorphisms from invariant circles to 2-tori

Oxtoby ‘paradox’ as before
Analogies of Averaging Theorem valid in some cases (e.g., in cases with an attractor)

Singular perturbation theory is challenging

HWB, T.J. Kaper and M. Krupa, Geometric desingularization of a cusp singularity in slow fast systems with applications to Zeeman’s examples. *JDDE* 25(4) (2013) 925-958