Bartlett Correction for likelihood ratio test

David J. Bakewell* University of Liverpool Liverpool L69 3GJ, U.K.

Ernst Wit University of Groningen (RUG) 9747 AG Groningen, Netherlands

1 Likelihood

The likelihood ratio statistic is given as:

$$\Lambda(X,Y) = -2\sup\left\{l(\theta|X,Y;\theta\in\Theta_0)\right\} - \sup\left\{l(\theta|X,Y;\theta\in\Theta)\right\},\,$$

We then maximize this function under two conditions,

$$l_{H_0} = \sup_{\alpha, \delta, \mu_j^x = \mu_j^y} \{ l(\alpha, \delta, \mu_1, ..., \mu_m) \}$$

$$l_{H_1} = \sup_{\alpha, \delta, \mu_1, ..., \mu_m} \{ l(\alpha, \delta, \mu_1, ..., \mu_m) \}$$
(2)

$$l_{H_1} = \sup_{\alpha, \delta, \mu_1, \dots, \mu_m} \{ l(\alpha, \delta, \mu_1, \dots, \mu_m) \}$$

$$(2)$$

The full log-likelihood can be written as

$$l(\alpha, \delta, \mu_j^x, \mu_j^y) = m \left(\ln \Gamma(\alpha + \frac{n}{2}) - \ln \Gamma(\alpha) - \frac{n}{2} \ln(2\pi\delta) \right) - (\alpha + \frac{n}{2}) \sum_{j=1}^m \ln \left(\frac{\zeta_j}{2} + \delta \right), \tag{3}$$

where for notational simplicity, we introduce the quantities $\zeta_j = \sum_{i=1}^{n_x} (x_{ij} - \mu_j^x)^2 + \sum_{i=1}^{n_y} (y_{ij} - \mu_j^y)^2$. and $n = n_x + n_y$. Applying an asymptotic expansion for the gamma function to Equation (3), the log-likelihood at the maximum is given by,

$$\lim_{\delta \to \infty} l(\delta) = \frac{nm}{2} \left(\ln \left(\frac{nm}{2\pi \sum_{j=1}^{m} \zeta_j} \right) - 1 \right). \tag{4}$$

2 Bartlett correction

We define the Bartlett correction as

$$BC = E_{H_0} \{ \Lambda(x, y) \}$$

= $-2E_{H_0}(l_{H_0} - l_{H_1})$ (5)

^{*}Corresponding author: d.bakewell@liv.ac.uk

with l_{H_0} and l_{H_1} defined in (1) and (2). By defining the small sample likelihood ratio statistic as $\Lambda_{\rm BC}(x,y)=m\frac{\Lambda(x,y)}{BC}$, we achieve that precisely the Bartlett corrected likelihood ratio statistic has $E_{H_0}\{LR_{\rm BC}\}=m$ as would be expected for a χ^2_m distribution.

Calculation of these two expectations in general is very involved. If we use the characterization for $l(\delta)$ defined in (4), we can get an explicit approximate expression for the Bartlett correction,

$$BC \approx -2E_{H_0} \left(\lim_{\delta \to \infty} l(\delta | H_0) - \lim_{\delta \to \infty} l(\delta | H_1) \right) \tag{6}$$

$$= mnE \ln \left(\frac{\sum\limits_{j=1}^{m} \zeta_j^{H0}}{\sum\limits_{j=1}^{m} \zeta_j^{H1}} \right)$$
 (7)

$$= nmE \ln \left(1 + \frac{\sum_{j=1}^{m} S_{\Delta,j}}{\sum_{j=1}^{m} (S_{x,j} + S_{y,j})} \right)$$
 (8)

whereby

$$\zeta_{j}^{H0} = \sum_{i=1}^{n_{x}} (x_{ij} - \widehat{\mu}_{j})^{2} + \sum_{i=1}^{n_{y}} (y_{ij} - \widehat{\mu}_{j})^{2}
\zeta_{j}^{H1} = \sum_{i=1}^{n_{x}} (x_{ij} - \overline{x}_{\cdot j})^{2} + \sum_{i=1}^{n_{y}} (y_{ij} - \overline{y}_{\cdot j})^{2}
S_{\Delta,j} = \frac{n_{x} n_{y} (\overline{x}_{\cdot j} - \overline{y}_{\cdot j})^{2}}{n_{y}},$$

with $\widehat{\mu}_j = \frac{n_x \overline{x}_{\cdot j} + n_y \overline{y}_{\cdot j}}{n_x + n_y}$ and $\overline{x}_{\cdot j} = \frac{1}{n_x} \sum_{i=1}^{n_x} x_{ij}$. Since for small values of m, the supremum of the likelihood in (1) and (2) are actually found at such degenerate δ , the approximation in (6) can be exact in certain cases. The log expressions are normally distributed, so that under the assumption of no differential expression and in the degenerate case $\sigma_j^2 = \sigma^2$, we have that $\overline{x}_{\cdot j} - \overline{y}_{\cdot j} \sim N(0, \frac{\sigma^2(n_x + n_y)}{n_x n_y})$ and therefore, $\sum_{j=1}^m \frac{S_{\Delta,j}}{\sigma^2} \sim \chi_m^2$ and $\sum_{j=1}^m \frac{S_{x,j} + S_{y,j}}{\sigma^2} \sim \chi_{m(n-2)}^2$. The ratio of χ^2 distributions yields an F distribution, thus

$$BC \approx nmE \ln \left(1 + \frac{F_{m,m(n-2)}}{n-2} \right).$$
 (9)

The density of $F_{m,m(n-2)}$ [Hogg et al., 2005, p.185] is

$$f(x) = \frac{(n-2)^{m/2} x^{m/2-1}}{B(m, m(n-2))(1 + x/(n-2))^{m(n-1)/2}}, \quad x > 0$$
(10)

and B(x, y) is the Beta function. The expected value in (9) can be found by applying a transformation theorem [Hogg et al., 2005, p.55], [Gradshteyn and Ryzhik, 2000, p.555]

$$BC \approx \frac{mn}{B(m, m(n-2))} \times \int_{0}^{\infty} \frac{\ln(1+x/(n-2))\nu^{m/2}x^{m/2-1}}{(1+x/(n-2))^{m(n-1)/2}} dx$$
 (11)

$$= mn \left[\psi \left(\frac{m(n-1)}{2} \right) - \psi \left(\frac{m(n-2)}{2} \right) \right]$$

$$= mn \left[\ln \left(1 + \frac{m/2}{m(n-2)/2} \right) + O(n^{-2}) \right]$$
(12)

$$\approx mn \ln \left(\frac{n-1}{n-2} \right)$$

$$\approx m \frac{n}{n-2}$$
(13)

$$\approx m \frac{n}{n-2}$$
 (14)

From this it follows that the Bartlett corrected likelihood ratio statistic is found as

$$\Lambda_{BC}(x,y) \approx \frac{\Lambda(x,y)}{n\left[\psi\left(\frac{m(n-1)}{2}\right) - \psi\left(\frac{m(n-2)}{2}\right)\right]}$$
(15)

$$\approx \frac{\Lambda(x,y)}{n\ln\left(\frac{n-1}{n-2}\right)} \tag{16}$$

$$\approx \frac{n-2}{n}\Lambda(x,y)$$
 (17)

References

- I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, 2000.
- R. V. Hogg, J. W. McKean, and A. T. Craig. Introduction to Mathematical Statistics. Pearson Prentice Hall, 2005.