Igor Hoveijn > DSMP > MATHS > JBI > FWN > RUG

  1. I. Hoveijn, O.N. Kirillov (2014) Determining the stability domain of perturbed 4-dimensional systems in 1:1 resonance. In Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations. (O.N. Kirillov and D. Pelinovsky, Eds.) Birkhauser. (BibTeX)
  2. H. Hanssmann, I. Hoveijn (2013) The 1:1 resonance in Hamiltonian systems. in preparation. (BibTeX)
  3. I. Hoveijn (2013) Syllabus Dynamische Systemen. Blackboard NHL. (BibTeX)
  4. D. Beersma, H.W. Broer, K. Efstathiou, K.A. Gargar, I. Hoveijn (2011) Pacer cell response to periodic Zeitgebers.. . (URL) (BibTeX)
  5. P. Bonckaert, I. Hoveijn, F. Verstringe (2010) Local analytic reduction of families of diffeomorphisms.. . (BibTeX)
  6. I. Hoveijn, O.N. Kirillov (2010) Singularities on the boundary of the stability domain near 1:1 resonance.. . (BibTeX)
  7. I. Hoveijn, J. Scholtmeijer (2009) Fractals. Epsilon uitgaven, Utrecht. (BibTeX)
  8. I. Hoveijn (2009) Wiskunde voor Scheikundige Technologie. Blackboard RuG. (BibTeX)
  9. I. Hoveijn (2008) Differentiability of the volume of a region enclosed by level sets.. . (BibTeX)
  10. P.C. van der Hulst, I. Hoveijn, A.A. van't Veld, J.A. Langendijk (2006) IMRT verification on an Elekta Sli15 with a standard Elekta MLC and a Beam Modulator. poster ESTRO. (BibTeX)
  11. J. Bogers, J.F. Ubbels, I. Hoveijn, J.A. Langendijk (2006) Analysis of the effect of patient positioning in Head \& Neck IMRT for Laryngeal carcinoma.. . (BibTeX)
  12. H.W. Broer, I. Hoveijn, M. van Noort, C. Sim\'o, G. Vegter (2004) The parametrically forced pendulum: a case study in one-and-a-half degrees of freedom.. . (BibTeX)
  13. I. Hoveijn, J.S.W. Lamb, R.M. Roberts (2003) Normal forms and unfoldings of linear systems in eigenspaces of (anti)-automorphisms of order two.. . (BibTeX)
  14. H.W. Broer, I. Hoveijn, G. Lunter and G. Vegter (2003) Bifurcations in Hamiltonian systems. Computing singularities by Groebner Bases. Springer Verlag, New York. (BibTeX)
  15. I. Hoveijn (ed) (2000) Concept Leidraad validatie studies, gepubliceerd als Leidraad validatiestudies toedelings- en simu\-latiemodellen. Technical report, Platos publication no 1. (BibTeX)
  16. H.W. Broer, I.Hoveijn, M. van Noort, G. Vegter (1999) The inverted pendulum: a singularity theory approach.. . (BibTeX)
  17. H.W. Broer, I. Hoveijn, G.A. Lunter, G. Vegter (1998) Resonances in a Spring-Pendulum: algorithms for equivariant singularity theory.. . (BibTeX)
  18. G.A. Lunter, I. Hoveijn, B.E. OldemanA faster algorithm for computing Birkhoff normal forms.. preprint 1998. (BibTeX)
  19. H.W. Broer, I. Hoveijn, M. van Noort (1997) A Reversible Bifurcation Analysis of the Inverted Pendulum.. . (BibTeX)
  20. H.W. Broer, I. Hoveijn (1997) Krommen en Oppervlakken I. dictaat Vakgroep Wiskunde RuG. (BibTeX)
  21. I. Hoveijn (1996) Versal Deformations and Normal Forms for Reversible and Hamiltonian Linear Systems.. . (BibTeX)
  22. I. Hoveijn, B. KrauskopfThe symmetry of a Poincar\'e map as an isotropy group.. preprint W-9613 Groningen, 1996. (BibTeX)
  23. I. Hoveijn (1996) Handleiding Mathematica. dictaat Vakgroep Wiskunde RuG. (BibTeX)
  24. I. Hoveijn (1996) Dynamische systemen en bifurcaties. In Syllabus, 50-e Vakantiecursus CWI., pages 63-79. (BibTeX)
  25. R.H. Cushman, I. Hoveijn (1995) Visualizing special motions of the Euler top. In Dynamical Systems and Applications. (R.P. Agarwal, Eds.) Pages 153-167. (BibTeX)
  26. I. Hoveijn, M. Ruijgrok (1995) On the stability of parametrically driven coupled oscillators in sum resonance.. . (BibTeX)
  27. H. Brands, J.S.W. Lamb, I. Hoveijn (1994) Periodic orbits in $k$-symmetric dynamical systems.. . (BibTeX)
  28. I. Hoveijn (1992) Aspects of Resonance in Dynamical Systems. PhD thesis. (BibTeX)
  29. I. Hoveijn (1992) Symplectic reversible maps, tiles and chaos.. . (BibTeX)
  30. F. Verhulst, I. Hoveijn (1992) Integrability and chaos in Hamiltonian normal forms. In Geometry and analysis in nonlinear dynamics. (H.W. Broer and F. Takens, Eds.) Longman. (BibTeX)
  31. I. HoveijnOn a symplectic numerical method for Hamiltonian systems.. preprint 647 Utrecht, 1991. (BibTeX)
  32. I. Hoveijn, F. Verhulst (1990) Chaos in the 1:2:3 Hamiltonian normal form.. . (BibTeX)