The critical probability for confetti percolation equals 1/2

Tobias Müller∗

April 29, 2015

Abstract

In the confetti percolation model, or two-coloured dead leaves model, radius one disks arrive on the plane according to a space-time Poisson process. Each disk is coloured back with probability p and white with probability $1 - p$. In this paper we show that the critical probability for confetti percolation equals $1/2$. That is, if $p > 1/2$ then a.s. there is an unbounded curve in the plane all of whose points are black; while if $p \leq 1/2$ then a.s. all connected components of the set of black points are bounded. This answers a question of Benjamini and Schramm [1].

1 Introduction and statement of results

The confetti percolation model is informally described as follows. Imagine that disks of equal radius have been raining down on the plane for a very long time. Each disk is either black (with probability p) or white (with probability $1 - p$). Suddenly the rain of confetti disks stops and we examine the pattern of colours that we see on the ground. Here the colour of a point of the plane is of course determined by the disk that was last to arrive among all disks that cover the point.

Figure 1: Simulations of confetti percolation with $p = 1/4, 1/2, 3/4$. A square of dimensions 200×200 is shown.

∗Utrecht University, Utrecht, the Netherlands. E-mail: t.muller@uu.nl. Part of the work in this paper was done while this author was supported by a VENI grant from Netherlands Organisation for Scientific Research (NWO).
A more formal (and precise) definition of the confetti percolation model is as follows. We start with a Poisson process \mathcal{P} of constant intensity $\lambda > 0$ on $\mathbb{R}^2 \times (-\infty, 0]$. Around each point of \mathcal{P} we center a closed horizontal disk of radius one. We colour each of these disks black with probability p and white with probability $1 - p$, independently of the colours of all other disks and of \mathcal{P}. To determine the colour of a point $q \in \mathbb{R}^2$, we draw a vertical line ℓ through q (here and in the rest of the paper we identify \mathbb{R}^2 with $\{z = 0\} \subseteq \mathbb{R}^3$) and assign to p the colour of the highest disk that intersects the line ℓ. We can think of the z-coordinate of a point of \mathcal{P} as the time when the corresponding confetti disk arrives, obscuring parts of pre-existing confetti disks from view. The confetti model is a special case of the color dead leaves model introduced by Jeulin [7] for the purpose of simulating mineral structures. The model of Jeulin allows for more colours and different shapes of the confettis (leaves).

We say that percolation occurs if there exists an unbounded curve $\gamma \subseteq \mathbb{R}^2$ all of whose points are black. As usual, the critical probability is defined as

$$p_c := \inf \{ p : \mathbb{P}_p(\text{percolation}) > 0 \}.$$
We index the probability only by p and not by λ since the precise value of λ is irrelevant – see the next section for a detailed explanation. Benjamini and Schramm [1] asked whether $p_c = 1/2$. Here we answer their question in the affirmative.

Theorem 1.1 $p_c = 1/2$.

Very recently, Hirsch [6] proved a version of Theorem 1.1 for the case when instead of disks, squares are used as the confetti. Part of Hirsch’s arguments in fact work for a wide range of shapes. In particular, the fact that $p_c \geq 1/2$, also in the setting with disk-shaped confetti, is already proved by Hirsch. However, technical issues forced Hirsch to restrict himself to the case of squares in his proof of the full result. He also asked for generalizations of his result to more general shapes. Our proof of Theorem 1.1 does in fact work for a large class of shapes. For the sake of the exposition we will focus on disk shaped confettis and we sketch the adaptations that need to be made to generalise the proof later, in Section 6. A crucial step in our approach is the application of an asymmetric version of a powerful “sharp threshold” result of Bourgain (that appeared in the appendix to Friedgut’s paper [5]). We believe similar arguments should work in many other percolation models.

Overview of the paper and the main ideas in the proof. With the work that has already done by Hirsch [6], all that remains for us to prove is that percolation does occur almost surely when $p > 1/2$. By standard machinery in percolation theory, it in fact suffices to show that, when $p > 1/2$, a rectangle of dimensions $3s \times s$ has a black crossing in the long direction with probability that will get arbitrarily close to one as we send s to infinity (and $p > 1/2$ stays fixed). To achieve this, we first show that we can approximate such a crossing event by a discrete event defined in terms of finitely many Bernoulli random variables. To define this discrete event, we dissect a relevant part of $\mathbb{R}^2 \times (-\infty, 0]$ into small, equal-sized cubes. Each Bernoulli random variable indicates whether or not there is a black, respectively white, point of the Poisson process inside a given cube. These Bernoulli random variables are independent and their parameters p take one of two values, depending on whether the random variable detects black or white points. A powerful tool of Bourgain (that appeared in the appendix to Friedgut’s paper [5]) gives a condition which must hold if a monotone event defined in terms of i.i.d. Bernoulli random variables does not have a rapid transition
from probability nearly zero to probability nearly one. Roughly speaking, it says that if there is no such rapid transition, then, whenever \(p \) is chosen such that the probability of our monotone event is neither too small nor too large, there must be a bounded number of variables such that the probability of the event, conditioned on those variables all equalling one, is close to one. Proposition 2.1 below generalizes this result to the case where the Bernoulli random variables are independent but may have different means. We use it show that if this conditional probability is large, then the unconditional probability is also large. This then implies that the unconditional probability of a crossing in fact does undergo a rapid transition at \(p = 1/2 \), then there is a bounded number cubes such that: if we condition on black points inside them and no white points inside them then the conditional probability of the (discrete approximation to the) crossing event must be close to one. Next, we show that if this conditional probability is large, then the unconditional probability is also large. This then implies that the unconditional probability of a crossing in fact does undergo a rapid transition at \(p = 1/2 \), which together with standard percolation machinery gives that percolation does occur almost surely when \(p > 1/2 \). That the unconditional probability is large if the conditional probability is large, will follow from the fact that it is very unlikely that the points of the Poisson process are such that there is no crossing, but adding and/or removing points in a fixed set of (boundedly many) boxes can create a crossing.

In the next section, we provide some preliminary discussion and results that we will need in the proof of Theorem 1.1. In Section 3 we define and formally justify the discrete approximations to the box-crossing events. Section 4 contains the main part of our argument, which applies Proposition 2.1 to the discrete approximations to crossing events. Section 5 we direct the reader to a place in the literature where the standard argument that completes the proof of Theorem 1.1 can be found. Section 6 briefly sketches the changes that need to be made to adapt the proof to work in the case of other confetti shapes besides the unit disk. The proof of Proposition 2.1 can be found in Appendix A.

2 Notation and preliminaries

Throughout this paper, \(\text{Po}(\lambda) \) will denote the Poisson distribution with parameter \(\lambda \) and \(\text{Bi}(n,p) \) will denote the binomial distribution with parameters \(n,p \). Recall that the \(\text{Bi}(1,p) \) is also called the *Bernoulli distribution*, and it is denoted by \(\text{Be}(p) \).

A subset \(A \) of the discrete hypercube \(\{0,1\}^n \) is called an *up-set* if it is closed under increasing coordinates. That is, whenever we take a point of \(A \) and we change one of its coordinates into a one, then the resulting point is still in \(A \). (I.e. if \(\bar{a} = (a_1,\ldots,a_n) \in A, \bar{b} = (b_1,\ldots,b_n) \in \{0,1\}^n \) and \(a_i \leq b_i \) for all \(i \) then also \(b \in A \).)

For \(\bar{p} = (p_1,\ldots,p_n) \in (0,1)^n \) the notation \(\mathbb{P}_\bar{p}(\cdot) \) will signify the situation where \(X_1,\ldots,X_n \) are independent random variables with \(X_i \overset{d}{=} \text{Be}(p_i) \). Observe that, for every \(A \subseteq \{0,1\}^2 \), the probability \(\mathbb{P}_\bar{p}([X_1,\ldots,X_n] \in A) \) can be written as a polynomial in \(p_1,\ldots,p_n \). In particular, this probability is a continuous function of the \(p_i \)-s and the partial derivatives \(\frac{\partial}{\partial p_i} \mathbb{P}_\bar{p}([X_1,\ldots,X_n] \in A) \) exist. Note also that if \(A \) is an up-set then \(\mathbb{P}_\bar{p}([X_1,\ldots,X_n] \in A) \) is non-decreasing in each parameter \(p_i \).

The following result is key to our proof of Theorem 1.1. It can be considered as an asymmetric version of Bourgain’s powerful sharp threshold result (that appeared in the appendix of Friedgut’s influential paper [5]).

Proposition 2.1 For every \(C > 0 \) and \(0 < \alpha < 1/2 \) there exist \(K = K(C,\alpha) \in \mathbb{N}, \delta = \delta(C,\alpha) > 0 \) such that the following holds, for every \(n \in \mathbb{N} \) and every up-set \(A \subseteq \{0,1\}^n \).
If \(p \in (0, 1)^n \) is such that \(\mathbb{P}_p[(X_1, \ldots, X_n) \in A] \in (\alpha, 1 - \alpha) \) and

\[
\sum_{i=1}^{n} p_i(1 - p_i) \frac{\partial}{\partial p_i} \mathbb{P}_p[(X_1, \ldots, X_n) \in A] \leq C,
\]

then there exist indices \(i_1, \ldots, i_K \in \{1, \ldots, n\} \) such that one of the following holds:

(a) \(\mathbb{P}_p[(X_1, \ldots, X_n) \in A \mid X_{i_1} = \cdots = X_{i_K} = 1] \geq \mathbb{P}_p[(X_1, \ldots, X_n) \in A] + \delta \), or

(b) \(\mathbb{P}_p[(X_1, \ldots, X_n) \in A \mid X_{i_1} = \cdots = X_{i_K} = 0] \leq \mathbb{P}_p[(X_1, \ldots, X_n) \in A] - \delta \).

What makes this result potentially very useful is the fact that \(K \) and \(\delta \) do not depend on the particular up-set or even the number of variables \(n \). Proposition 2.1 can be derived in a relatively straightforward manner from a version of Bourgain’s sharp threshold result for general probability spaces that can be found in O’Donnell’s new book [9]. For completeness we provide a proof in Appendix A.

Recall that in the definition of the confetti model, we used a constant intensity Poisson process \(\mathcal{P} \) on \(\mathbb{R}^2 \times (-\infty, 0] \). Throughout the paper, we will denote its intensity by \(\lambda > 0 \). It follows from standard properties of the Poisson process (see for instance [8]) that the precise value of \(\lambda \) is irrelevant: if we rescale the \(z \)-coordinates of the points of \(\mathcal{P} \) by a constant \(a > 0 \) then we obtain a Poisson process on \(\mathbb{R}^2 \times (-\infty, 0] \) with intensity \(\lambda/a \). Since the vertical ordering of the confetti disks is unchanged by this scaling, so are the colours that each of the points of the plane receives.

It is convenient to enumerate the points of our Poisson process \(\mathcal{P} \) as \(\mathcal{P} = \{p_1, p_2, \ldots\} \). Furthermore, we let \(C_i \) (for \(i \)-th confetti disk) denote the closed horizontal disk around \(p_i \) of radius one and we let \(D_i \) denote the projection of \(C_i \) projection onto \(\mathbb{R}^2 \) (recall that we identify \(\mathbb{R}^2 \) with \(\{z = 0\} \subseteq \mathbb{R}^3 \)). The visible part of \(D_i \) is defined as:

\[
V_i := D_i \setminus \bigcup_{j : z_j > z_i} \text{int}(D_j).
\]

Note that a visible part may consist of more than one path-connected component. We will call the (path-) connected components of the visible parts cells. The reader can probably easily convince him- or herself of the following straightforward fact, a formal proof of which can for instance be found in the work of Bordenave et al. [4].

Lemma 2.2 ([4], Lemma 2) Almost surely, every point of \(\mathbb{R}^2 \) is contained in some cell, and every bounded set intersects only finitely many cells.

An elementary property of the Poisson process is that, almost surely, the set of all coordinates of its points will be algebraically independent (no subset is the a solution to a non-trivial polynomial equation with integer coefficients). In particular, all \(z \)-coordinates are distinct, no two of the disks \(D_i \) and \(D_j \) are tangent, and no point lies on the boundary of more than two \(D_i \)’s. From this, together with Lemma 2.2, it can be seen that almost surely:

(C-1) Each cell has non-empty interior and is bounded by finitely many circle segments (this also includes the case where the boundary is a single circle), and;
Each point of the plane is either in the interior of some cell, on the boundary of exactly two cells or on the boundary of exactly three cells.

(See Figure 2 for a depiction.) The points where three cells meet together with the circle segments separating adjacent cells can be viewed as an infinite three-regular plane graph.

Let P_b the set of points of the Poisson process \mathcal{P} that receive a black disk, and let $P_w \subseteq \mathcal{P}$ denote those points that receive a white disk. By standard properties of the Poisson process (see again [8]), P_b and P_w are independent Poisson processes with intensities $\lambda_b := p\lambda$ and $\lambda_w := (1-p)\lambda$, respectively, on $\mathbb{R}^2 \times (-\infty, 0]$. Conversely, we can start with two independent Poisson processes \mathcal{P}_b and \mathcal{P}_w of intensities λ_b resp. λ_w on $\mathbb{R}^2 \times (-\infty, 0]$. If we now center black disks on the points of \mathcal{P}_b and white disks on the points of \mathcal{P}_w then the situation is indistinguishable from the original setup with parameters $\lambda := \lambda_b + \lambda_w$ and $p := \lambda_b / (\lambda_b + \lambda_w)$. We will work with both settings in the paper, depending on which is more convenient at the time. Sometimes we will use the notation $\mathbb{P}_{\lambda_b, \lambda_w}(\cdot)$ to emphasize that we are working in the second setting (and to specify the values of λ_b, λ_w).

Formally speaking, we can say that the pair $(\mathcal{P}_b, \mathcal{P}_w)$ takes values in the set Ω whose elements are pairs (ω_b, ω_w) of countable subsets of the lower halfspace $\mathbb{R}^2 \times (-\infty, 0]$. We will call a such pair $\omega = (\omega_b, \omega_w)$ a configuration. A configuration specifies all the relevant information about a particular realization of the confetti model.

We say that an event E is black increasing if it is preserved under the addition of black points and the removal of white points. That is, if we have a configuration $\omega = (\omega_b, \omega_w)$ for which E holds, and we set $\omega'_b := \omega_b \cup A, \omega'_w := \omega_w \setminus B$ for arbitrary countable sets $A, B \subseteq \mathbb{R}^2 \times (-\infty, 0]$ then E holds for the configuration (ω'_b, ω'_w). In this article, we will rely heavily on the following generalization of Harris’ inequality due to Hirsch.

Lemma 2.3 ([6], Lemma 1) If E_1, E_2 are two black-increasing events then

$$\mathbb{P}_p(E_1 \cap E_2) \geq \mathbb{P}_p(E_1) \mathbb{P}_p(E_2),$$

for all $p \in [0, 1]$.

Let $R \subseteq \mathbb{R}^2$ be an axis-parallel rectangle. We say that R has a black, horizontal crossing if there is a polygonal curve $\gamma \subseteq R$ between a point on the left edge of R and a point of the right
edge of \(R \), such that all points of \(\gamma \) are black. Similarly we say \(R \) has a **black, vertical crossing** if there is such a curve between the bottom edge and the top edge of \(R \), and we define white horizontal and vertical crossings analogously. Let us remark that the restriction to polygonal curves is not really a restriction at all: as can be seen from the earlier observations in this section, unless a certain event of probability zero holds, whenever there is a black, continuous (but not necessarily polygonal) curve “horizontally crossing” \(R \) then there also is a polygonal such curve. By restricting attention to polygonal curves we avoid having to needlessly deal with topological intricacies in our proofs. In the rest of the paper we will write:

\[
H(R) := \{ R \text{ has a black, horizontal crossing} \},
\]

\[
V(R) := \{ R \text{ has a black, vertical crossing} \}.
\]

For notational convenience we will also write

\[
H_{s \times t} := H([0, s] \times [0, t]).
\]

A key ingredient to our proof of Theorem 1.1 is the following result of Hirsch \cite{6}, whose proof is essentially an adaptation of the sophisticated method developed by Bollobás and Riordan \cite{2} to settle the critical probability for Voronoi percolation.

Theorem 2.4 \cite{6} *For every \(\rho > 0 \), we have that*

\[
\limsup_{s \to \infty} \mathbb{P}_{1/2}(H_{\rho s \times s}) > 0.
\]

Proposition 3.1 *For every \(\varepsilon > 0 \), every \(\lambda_b, \lambda_w > 0 \) and every bounded set \(A \subseteq \mathbb{R}^2 \), there exists a \(k_0 = k_0(\varepsilon, \lambda_b, \lambda_w, A) \) such that*

\[
\sup_{R \subseteq A} \sup_{\lambda_b, \lambda_w} \left| \mathbb{P}_{\lambda_b, \lambda_w}[H(R)] - \mathbb{P}_{\lambda_b, \lambda_w}[H^{(k)}(R)] \right| < \varepsilon,
\]

for all \(k \geq k_0 \).
The rest of this section is devoted to the proof of the last proposition. The proof is relatively straightforward and could be skipped in a first reading of the paper.

For technical reasons it is convenient to also treat horizontal and vertical line segments and single points as rectangles in the remainder of this section. Of course, when \(R \) is a vertical line segment, then \(H(R) \) holds if at least one point of \(R \) is black, and when \(R \) is a horizontal line segment then \(H(R) \) holds if all points of \(R \) are black.

Lemma 3.2 For every \(\lambda_b, \lambda_w > 0 \) and every axis-parallel rectangle \(R \) we have that

\[
P_{\lambda_b, \lambda_w}(H(R)) = \lim_{k \to \infty} P_{\lambda_b, \lambda_w}(H^{(k)}(R)).
\]

Proof: For notational convenience, let us write \(E := H(R) \). As already noted, we have \(E^{(1)} \subseteq E^{(2)} \subseteq \cdots \subseteq E \). This gives

\[
P_{\lambda_b, \lambda_w}(E) \geq P_{\lambda_b, \lambda_w}\left(\bigcup_{k=1}^{\infty} E^{(k)} \right) = \lim_{k \to \infty} P_{\lambda_b, \lambda_w}(E^{(k)}).
\]

It remains to show the reverse inequality. To achieve this, we will show that for all configurations \(\omega \in E \) except for a set of configurations of measure zero, we have \(\omega \in \bigcup_{k=1}^{\infty} E^{(k)} \).

Let us thus fix an arbitrary configuration \(\omega \in E \). It is convenient to enumerate \(\omega_b \cup \omega_w \) as \(\{p_1, p_2, \ldots \} \) and to write \(p_i = (x_i, y_i, z_i) \). Discarding a set of configurations of total measure zero, we can assume without loss of generality that every bounded set contains finitely many points of \(\omega_b \cup \omega_w \), that all the coordinates of all the \(p_i \)'s are distinct and that the properties (C-1) and (C-2) hold. Hence, there is a black horizontal crossing \(\gamma \) of \(R \) that does not pass through any “corners” of cells (i.e. points on the boundary of three or more cells), and does not pass through any point on the common boundary of a black and a white cell. Let us fix such a crossing \(\gamma \).

Consider a point \(q \in \gamma \). Let us suppose first that \(q \) lies in the interior of some (black) cell. That \(q \) lies in the interior of a black cell means that the highest \(p_i \) such that \(\|q - \pi(p_i)\| \leq 1 \) belongs to \(\omega_b \), and moreover \(\|q - \pi(p_i)\| < 1 \). (Here of course \(\pi(x, y, z) := (x, y) \) denotes the projection onto the plane.) From our assumptions on \(\omega \), we see that there is a \(\varepsilon > 0 \) such that \(\|q - \pi(p_i)\| < 1 - \varepsilon \) and for every \(j \neq i \) we have either \(z_j < z_i - \varepsilon \) or \(\|q - \pi(p_j)\| > 1 + \varepsilon \). (Otherwise there are either two points with equal coordinates, or infinitely many points in some bounded region.) Let us now fix an integer \(k_0(q) \) satisfying \(2^{-k_0(q)} < \varepsilon/1000 \) and \(k_0(q) \geq |x_i| + |y_i| + |z_i| + 1 + \varepsilon \). Then we have that for every \(k \geq k_0(q) \) and every \(k \)-perturbation \(\omega' \) of \(\omega \), the point \(q \) together with all points of the plane at distance \(< 2^{-k_0(q)} \) from \(q \) will be coloured black in the colouring of the plane defined by \(\omega' \).

Suppose now that \(q \) lies on the common boundary of two black cells (but not on a corner). This means that if \(p_i \), respectively \(p_j \), are the highest, respectively second highest, points such that \(\|q - \pi(p_i)\|, \|q - \pi(p_j)\| \leq 1 \) then \(p_i, p_j \in \omega_b \) and \(\|q - \pi(p_i)\| = 1 \) and \(\|q - \pi(p_j)\| < 1 \). Similarly to before, we see that there exist a \(k_0(q) \) such that, for every \(k \geq k_0(q) \) and every \(k \)-perturbation \(\omega' \) of \(\omega \), the point \(q \) together with all points of the plane at distance \(< 2^{-k_0(q)} \) from \(q \) will be coloured black under \(\omega' \).

Next, let us observe that the disks \(\{B(q, 2^{-k_0(q)}) : q \in \gamma \} \) form an open cover of the compact set \(\gamma \). Hence there exists a finite subset \(\{B(q_1, 2^{-k_0(q_1)}), \ldots, B(q_N, 2^{-k_0(q_N)})\} \) that still covers \(\gamma \). Setting \(k := \max(k_0(q_1), \ldots, k_0(q_N)) \), we see that in every \(k \)-perturbation of \(\omega \), the entire curve \(\gamma \) is coloured black. In other words, \(\omega \in E^{(k)} \).
Thus, we have shown that every $\omega \in E$, except for a set of configurations of total measure zero, lies in some $E^{(k)}$. In other words, the desired inequality
\[
\mathbb{P}_{\lambda_b,\lambda_w}(E) \leq \mathbb{P}_{\lambda_b,\lambda_w}\left(\bigcup_{k=1}^{\infty} E^{(k)}\right) = \lim_{k \to \infty} \mathbb{P}_{\lambda_b,\lambda_w}(E^{(k)}),
\]
holds as required.

\textbf{Lemma 3.3} For every (fixed) $\lambda_b, \lambda_w > 0$ the probability $\mathbb{P}_{\lambda_b,\lambda_w} [H_{s \times t}]$ is continuous as a function of s, t.

\textbf{Proof:} Let us first observe that if $0 \leq s_1 < s_2$ and if $H_{s_1 \times t}$ holds but $H_{s_2 \times t}$ does not, then there must exist a (black) cell that intersects $(s_1, 0, t] \times [0, t]$ but not $(s_2, 0, t] \times [0, t]$. Let E_h denote the event that there exists a cell that intersects $\{0\} \times [0, t]$ but not $\{h\} \times [0, t]$. By the previous observation and the translation invariance of the colouring of the plane defined by the confetti process we have:
\[
|\mathbb{P}_{\lambda_b,\lambda_w} [H_{s \times t}] - \mathbb{P}_{\lambda_b,\lambda_w} [H_{s' \times t}]| \leq \mathbb{P}_{\lambda_b,\lambda_w}(E_{h-s'}).
\]
To prove continuity in s, it thus suffices to show that $\mathbb{P}_{\lambda_b,\lambda_w}(E_h) \to 0$ as $h \downarrow 0$. To this end, let us fix an arbitrary $\varepsilon > 0$ and C denote the (random) collection of cells that intersect $[0, 1] \times [0, t]$. Note that, by Lemma 2.2, there is a $K = K(\varepsilon)$ such that $\mathbb{P}_{\lambda_b,\lambda_w}(|C| > K) \leq \varepsilon/2$. Let $n \geq 2K/\varepsilon$. For $i = 0, \ldots, n-1$ let N_i denote the number of cells $C \in \mathcal{C}$ that intersect ℓ_i but not ℓ_{i+1}, where ℓ_j denotes the vertical line $\ell_j := \{x = j/n\}$. Since cells are path-connected the set $\{i : C \cap \ell_i \neq \emptyset\}$ forms an “interval” $\{a, a+1, \ldots, a+b\}$ for each cell C. In particular, for each cell $C \in \mathcal{C}$ there is at most one i such that C intersects ℓ_i but not ℓ_{i+1}. In other words, we have
\[
\sum_{i=0}^{n-1} N_i \leq |C|,
\]
which implies that
\[
\mathbb{E}_{\lambda_b,\lambda_w} \left(N_0 | |C| \leq K\right) + \cdots + \mathbb{E}_{\lambda_b,\lambda_w} \left(N_{n-1} | |C| \leq K\right) \leq K.
\]
So there exists an $i \in \{0, \ldots, n-1\}$ such that
\[
\mathbb{P}_{\lambda_b,\lambda_w}(N_i > 0 | |C| \leq K) \leq \mathbb{E}_{\lambda_b,\lambda_w} \left(N_i | |C| \leq K\right) \leq K/n.
\]
But then we also have
\[
\mathbb{P}_{\lambda_b,\lambda_w}(E_{1/n}) \leq \mathbb{P}(N_i > 0) \leq \mathbb{P}(N_i > 0 | |C| \leq K) + \mathbb{P}(|C| > K) \leq K/n + \varepsilon/2 \leq \varepsilon,
\]
where the first line holds by translation invariance, the penultimate line holds by choice of K and the last line holds by choice of n. Thus, we have seen that indeed $\mathbb{P}(E_h) \to 0$ as $h \downarrow 0$, which proves continuity in s. Continuity in t follows analogously. ■
The final ingredient we will need for the proof of Proposition 3.1 is the following variant of Dini’s theorem. It is an easy undergraduate exercise, but for completeness we provide a proof in Appendix B.

Lemma 3.4 Let \(I \subseteq \mathbb{R}^d \) be an axis parallel box (in other words, a cartesian product of bounded, closed intervals) and let \(f, f_1, f_2, \ldots \) be functions satisfying:

(i) \(f : I \to \mathbb{R} \) is continuous, and;

(ii) \(f_k : I \to \mathbb{R} \) is non-decreasing (in each coordinate) for all \(k \in \mathbb{N} \), and;

(iii) \(f_{k+1}(x) \geq f_k(x) \) for all \(k \in \mathbb{N}, x \in I \), and;

(iv) \(\lim_{k \to \infty} f_k(x) = f(x) \) for all \(x \in I \).

Then \(f_k \) converges uniformly to \(f \).

Let us remark that, by an easy reparametrization, the lemma also holds if instead of condition (ii) \(f_k \) is non-decreasing in some coordinates and non-increasing in the other coordinates – with the set of coordinates on which \(f_k \) is non-increasing being the same for each \(k \).

Proof of Proposition 3.1 Without loss of generality we can take \(A = [-K, K]^2 \) for some \(K \). We define \(f, f_1, f_2, \ldots : [-K, K]^4 \to \mathbb{R} \) by

\[
\begin{align*}
\text{(i)} & \quad f(x_1, x_2, y_1, y_2) := \mathbb{P}_{\lambda_b, \lambda_w} \left[H([x_1, \max(x_1, x_2)] \times [y_1, \max(y_1, y_2)]) \right], \\
\text{(ii)} & \quad f_k(x_1, x_2, y_1, y_2) := \mathbb{P}_{\lambda_b, \lambda_w} \left[H^{(k)}([x_1, \max(x_1, x_2)] \times [y_1, \max(y_1, y_2)]) \right].
\end{align*}
\]

We have \(f_{k+1} \geq f_k \) by definition of \(E^{(k)} \). By Lemma 3.2, \(f_k \) converges pointwise to \(f \). That \(f \) is continuous follows from Lemma 3.3 (note that \(f(x_1, x_2, y_1, y_2) = f(0, x_2 - x_1, 0, y_2 - y_1) \)).

Finally note that \(f_k \) is non-decreasing in \(x_1, y_2 \) and non-increasing in \(x_2, y_1 \). Appealing to Lemma 3.4 and the remark following it, we see that \(f_k \) converges uniformly to \(f \), which is precisely what Proposition 3.1 states.

4 Crossing probabilities when \(p > 1/2 \)

Proposition 4.1 For every \(p > 1/2 \) it holds that \(\sup_{s > 1000} \mathbb{P}_p(H_{3s \times s}) = 1 \).

Proof: By Proposition 2.4 there exists a constant \(c > 0 \) and a sequence \((s_n)_n \) tending to infinity such that \(\mathbb{P}_{1/2}(H_{3s_n \times s_n}) \geq c \) for all \(n \). By restricting to a subsequence if necessary, we can assume without loss of generality that \(s_1 > 1000 \) and \(s_{i+1} > 1000s_i \) for all \(i \).

Let us fix an arbitrary \(p > 1/2 \) and \(0 < \alpha < c/2 \). We will show that \(\mathbb{P}_p(H_{3s_n \times s_n}) \geq 1 - \alpha \) for some \(n \in \mathbb{N} \), which will clearly prove the proposition.

From now on we switch to the \(\mathcal{P}_b, \mathcal{P}_w \) setting. We pick \(m = m(p, \alpha) \in \mathbb{N} \) large (to be made precise later in the proof). Appealing to Proposition 3.1, we can pick a \(k \) such that

\[
\left| \mathbb{P}_{1,1}[H^{(k)}(R)] - \mathbb{P}_{1,1}[H(R)] \right|, \left| \mathbb{P}_{1,1}[V^{(k)}(R)] - \mathbb{P}_{1,1}[V(R)] \right| \leq c/2,
\]

for every axis-parallel rectangle \(R \subseteq [-1000s_m, 1000s_m]^2 \). We now define the function \(F : [0, 1] \to [0, 1] \) by:
\[F(t) := \mathbb{P}_{\lambda_b(t), \lambda_w(t)} H_{3sm \times sm}^{(k)}, \]

where

\[\lambda_b(t) := 1 + t(2p - 1), \quad \lambda_w(t) := 1 - t(2p - 1). \]

By the discussion in Section 2, we have

\[F(0) = \mathbb{P}_{1, 1} H_{3sm \times sm}^{(k)} = \mathbb{P}_{1/2} H_{3sm \times sm}^{(k)}, \]
\[F(1) = \mathbb{P}_{2p, 2(1 - p)} H_{3sm \times sm}^{(k)} = \mathbb{P}_p H_{3sm \times sm}^{(k)}. \]

In particular, \(\mathbb{P}_p H_{3sm \times sm} \geq F(1) \), so that it suffices to prove that \(F(1) \geq 1 - \alpha \). Aiming for a contradiction, let us assume that \(F(1) < 1 - \alpha \) instead.

We now remark that, for every event \(E \), whether or not \(E(k) \) holds is determined by a finite number of independent Bernoulli random variables. To make this more concrete, let us arbitrarily enumerate the side length \(2^{-k} \)-cubes of \(C_k \) as \(c_1, \ldots, c_{n/2} \), where \(n = k^3 2^{3k+1} \) is twice the number of such cubes. We now define

For \(1 \leq i \leq n/2 \):

\[X_i = \begin{cases} 1 & \text{if } c_i \text{ contains a black point,} \\ 0 & \text{otherwise.} \end{cases} \]

For \(n/2 < i \leq n \):

\[X_i = \begin{cases} 1 & \text{if } c_{i-n/2} \text{ does not contain a white point,} \\ 0 & \text{otherwise.} \end{cases} \]

Then the variables \(X_1, \ldots, X_n \) are independent Bernoulli random variables and we can write

\[\mathbb{P}_{\lambda_b, \lambda_w} E^{(k)} = \mathbb{P}[(X_1, \ldots, X_n) \in A] \] for some \(A = A(E) \subseteq \{0, 1\}^n \).

In particular, we can write

\[F(t) = \mathbb{P}_{\mathbb{P}(t)}[(X_1, \ldots, X_n) \in A], \quad (2) \]

where \(A \subseteq \{0, 1\}^n \) is an up-set (as \(H_{3sm \times sm}^{(k)} \) is a black-increasing event), and the parameters \(p_i(t) = \mathbb{E}X_i \) satisfy:

\[p_i(t) = \begin{cases} 1 - \exp[-\lambda_b(t)2^{-3k}] & \text{for } 1 \leq i \leq n/2, \text{ and} \\ \exp[-\lambda_w(t)2^{-3k}] & \text{for } n/2 < i \leq n. \end{cases} \]

By the mean value theorem, there must be a \(t \in [0, 1] \) such that

\[F'(t) \leq F(1) - F(0) \leq 1. \]

(That \(F \) is differentiable can be seen from the expression \((2) \) and the expressions for \(p_i(t) \).) By the chain rule we have

\[F'(t) = \sum_{i=1}^n \frac{\partial}{\partial p_i} \mathbb{P}_{\mathbb{P}}[(X_1, \ldots, X_n) \in A] \cdot p'_i(t). \]

For \(i \leq n/2 \) we have
\[
p'(t) = (2p - 1) \cdot 2^{-3k} \cdot \exp[-\lambda_b(t)2^{-3k}]
\geq \left(\frac{2p-1}{2p}\right) \cdot \lambda_b(t) \cdot 2^{-3k} \cdot \exp[-\lambda_b(t)2^{-3k}]
\geq \left(\frac{2p-1}{2p}\right) \cdot (1 - \exp[-\lambda_b(t)2^{-3k}]) \cdot \exp[-\lambda_b(t)2^{-3k}]
= \left(\frac{2p-1}{2p}\right) p_i(t)(1 - p_i(t)).
\]

(Here the second line follows since \(\lambda_b(t) \leq 2p\) and the third line follows since \(e^{-x} \geq 1 - x\) for all \(x \geq 0\).) Similarly, we find that for \(i \geq n/2\):

\[
p'_i(t) = (2p - 1) \cdot 2^{-3k} \cdot \exp[-\lambda_w(t)2^{-3k}] \geq \left(\frac{2p-1}{2p}\right) p_i(t)(1 - p_i(t)).
\]

It follows that

\[
\sum_{i=1}^n p_i(1 - p_i) \frac{\partial}{\partial p_i} \mathbb{P}_{\mathcal{P}(t)}[(X_1, \ldots, X_n) \in A] \leq 2p/(2p - 1) =: C.
\]

We also have

\[
\mathbb{P}_{\mathcal{P}(t)}[(X_1, \ldots, X_n) \in A] = F(t) \in [F(0), F(1)] \subseteq (\alpha, 1 - \alpha).
\]

(Using that \(F\) is non-decreasing as \(\lambda_b(t)\) is increasing and \(\lambda_w(t)\) decreasing, that \(F(1) < 1 - \alpha\) by assumption, and that \(F(0) = \mathbb{P}_{1/2}[H_{3m \times 3m}^{(k)}] \leq \mathbb{P}_{1/2}[H_{3sm \times sm}] - c/2 \geq c/2 > \alpha\).)

Proposition 2.1 thus provides us with indices \(1 \leq i_1, \ldots, i_K \leq n\) and \(b \in \{0, 1\}\) such that

\[
\mathbb{P}_{\mathcal{P}(t)}[H_{3sm \times sm}^{(k)} X_{i_1} = \cdots = X_{i_K} = b] - \mathbb{P}_{\mathcal{P}(t)}[H_{3sm \times sm}^{(k)}] \geq \delta,
\]

where \(K = K(\alpha, C) \in \mathbb{N}\) and \(\delta = \delta(\alpha, C) > 0\) are constants that depend only on \(p\) and \(\alpha\) but – and this is crucial for the current proof – not on \(m\) or \(k\).

For \(j = 1, \ldots, K\) let us fix a point \(q_j \in \mathbb{R}^2\) that is above the cube that \(X_{i_j}\) corresponds to. (I.e. \(q_j\) is contained in the projection of the cube \(c_{i_j}\), respectively \(c_{i_j-n/2}\), for \(i_j \leq n/2\), respectively \(i_j > n/2\).) For \(q \in \mathbb{R}^2\) and \(r > 0\) let us denote \(R_{q,r}^{\text{left}} := q + \left[-\frac{3r}{2}, \frac{3r}{2}\right] \times \left[-\frac{3r}{2}, \frac{3r}{2}\right], R_{q,r}^{\text{right}} := q + \left[\frac{r}{2}, \frac{3r}{2}\right] \times \left[-\frac{3r}{2}, \frac{3r}{2}\right], R_{q,r}^{\text{top}} := q + \left[-\frac{3r}{2}, \frac{3r}{2}\right] \times \left[\frac{r}{2}, \frac{3r}{2}\right], R_{q,r}^{\text{bottom}} := q + \left[\frac{r}{2}, \frac{3r}{2}\right] \times \left[-\frac{3r}{2}, \frac{3r}{2}\right]\) and let \(A_{q,r}\) denote the event \(V(R_{q,r}^{\text{left}}) \cap V(R_{q,r}^{\text{right}}) \cap H(R_{q,r}^{\text{top}}) \cap H(R_{q,r}^{\text{bottom}})\). See Figure 3 for a depiction.

![Figure 3: The event A_{q,r}.](image-url)
Let us observe that the event $A_{q,r}$ implies that there is a closed, black Jordan curve that separates $q + \left[\frac{-r}{2}, \frac{r}{2}\right]^2$ from $\mathbb{R}^2 \setminus \left(q + \left[\frac{-3s}{2}, \frac{3s}{2}\right]^2 \right)$. For $j = 1, \ldots, K$ and $\ell = 1, \ldots, m - 1$ let us define $E_{j,\ell} := A_{q_j, s_{\ell}}^{(k)}$. By Lemma 2.3, the choice of the sequence $(s_n)_n$ and (11), we have that

$$\mathbb{P}_{\overline{p}(t)}[E_{j,\ell}] \geq \mathbb{P}_{\overline{p}(0)}[E_{j,\ell}] \geq (c/2)^4.\]$$

(In the first inequality we also used that $E_{j,\ell}$ is a black-increasing event and $\overline{p}(t) \geq \overline{p}(0)$ as $\lambda_b(\ell) \geq 1 = \lambda_b(0) = \lambda_w(0) \geq \lambda_w(\ell).$)

For $1 \leq j \leq K$ we define $I_j \subseteq \{1, \ldots, m - 1\}$ by:

$$\ell \in I_j \iff \{q_1, \ldots, q_K\} \cap \left(q_j + \left[\frac{-3s_{\ell} - 100}{2}, \frac{3s_{\ell} + 100}{2}\right]^2 \setminus \left[\frac{-s_{\ell} + 100}{2}, \frac{s_{\ell} - 100}{2}\right]^2 \right) = \emptyset.\]$$

In particular, if $\ell \in I_j$ then each of q_1, \ldots, q_K has distance at least 50 to the square annulus $q_j + \left[\frac{-3s_{\ell} - 100}{2}, \frac{3s_{\ell} + 100}{2}\right] \setminus \left[\frac{-s_{\ell} + 100}{2}, \frac{s_{\ell} - 100}{2}\right]^2$. Let us observe that, since $s_1 \geq 1000$, $s_{i+1} \geq 1000s_i$ by assumption, we have that $|I_j| \geq (m - 1) - (K - 1) = m - K$ for each j. Let us set:

$$E_j := \bigcup_{\ell \in I_j} E_{j,\ell}.\]$$

Using that the events $E_{j,1}, \ldots, E_{j,m-1}$ are independent, we find

$$\mathbb{P}_{\overline{p}(t)}[E_j] = 1 - \mathbb{P}_{\overline{p}(t)} \left[\bigcap_{\ell \in I_j} E_{j,\ell}^c \right] \geq 1 - (1 - (c/2)^2)^{|I_j|} \geq 1 - (1 - (c/2)^4)^{m-K}.\]$$

Writing $E := \bigcap_{j=1}^K E_j$, we have:

$$\mathbb{P}_{\overline{p}(t)}(E) \geq 1 - K(1 - (c/2)^4)^{m-K} \geq 1 - \delta/3,$$

where the last inequality holds for m sufficiently large. Thus we also have that

$$\mathbb{P}_{\overline{p}(t)}\left[H_{3s_m \times s_m}^{(k)} \cap E \right] \geq \mathbb{P}_{\overline{p}(t)}\left[H_{3s_m \times s_m}^{(k)} \right] - \mathbb{P}_{\overline{p}(t)}\left[E^c \right] \geq \mathbb{P}_{\overline{p}(t)}\left[H_{3s_m \times s_m}^{(k)} \right] - \delta/3.\]$$

Note that the event E is independent of the event $\{X_{i_1} = \cdots = X_{i_K} = b\}$ since the state of these random variables can only influence the colour of points within distance less than two $(1 + 2^{1/2-k}$ to be exact) of q_1, \ldots, q_K. Hence, completely analogously to (4), it follows that

$$\mathbb{P}_{\overline{p}(t)}\left[H_{3s_m \times s_m}^{(k)} \cap E \right] \mid X_{i_1} = \cdots = X_{i_K} = b \geq \mathbb{P}_{\overline{p}(t)}\left[H_{3s_m \times s_m}^{(k)} \mid X_{i_1} = \cdots = X_{i_K} = b \right] - \delta/3 \]$$

Next, we claim that:

Claim 4.2 We have $\mathbb{P}_{\overline{p}(t)}\left[H_{3s_m \times s_m}^{(k)} \cap E \right] \mid X_{i_1} = \cdots = X_{i_K} = b] = \mathbb{P}_{\overline{p}(t)}\left[H_{3s_m \times s_m}^{(k)} \cap E \right].$\]

\[1\]Recall that Jordan curve is a closed, non-self-intersecting curve. Put differently, it is a homeomorphic image of the circle S^1.\]
Proof of Claim 4.2} Let B denote the event that there is a black, horizontal crossing of $R := [0, 3s_m] \times [0, s_m]$ that does not get within distance two of any of the points q_1, \ldots, q_K. Obviously we have $B^{(k)} \subseteq H^{(k)}_{3s_m \times s_m}$.

We will show that $H^{(k)}_{3s_m \times s_m} \cap E \subseteq B^{(k)}$. This implies that $H^{(k)}_{3s_m \times s_m} \cap E = B^{(k)} \cap E$ is an event that is independent of the state of X_{1j}, \ldots, X_{Kj} (since these variables can only influence the colours of points in the plane that are within distance two of q_1, \ldots, q_K). This in turn implies the claim.

Let us thus pick a configuration $\omega \in H^{(k)}_{3s_m \times s_m} \cap E$, and consider an arbitrary k-perturbation ω' of ω. In the colouring of the plane defined by ω', there must be a black, horizontal crossing γ of R and for each $j = 1, \ldots, K$ there is an $\ell_j \in \mathcal{I}_j$ and black crossings $\beta^\text{left}_j, \beta^\text{right}_j, \beta^\text{top}_j, \beta^\text{bottom}_j$ of $R^\text{left}_{q_j, s_{\ell_j}}, R^\text{right}_{q_j, s_{\ell_j}}, R^\text{top}_{q_j, s_{\ell_j}}, R^\text{bottom}_{q_j, s_{\ell_j}}$ (in the long direction each time). For notational convenience we’ll also write $\beta_j := \beta^\text{left}_j \cup \beta^\text{right}_j \cup \beta^\text{top}_j \cup \beta^\text{bottom}_j$. We will show that there is in fact a black, horizontal crossing γ' of R that does not come within distance 2 of any of the q_i-s. To show this, it is enough to show that if γ comes within distance 2 of q_j, then there is a black, horizontal crossing $\gamma' \subseteq \gamma \cup \beta_j$ of R that does not come within distance 2 of q_j. (This is because γ' will be within distance 2 of strictly fewer q_i-s than γ is. We can thus apply induction on the number of q_i-s that are within distance two of γ to find a crossing that does not come within distance two of any q_i.)

Observe that γ must intersect β_j, since $B(q_j, 2) \subseteq q_j + [-s_{\ell_j}/2, s_{\ell_j}/2]^2$, γ contains a Jordan curve that separates $q_j + [-s_{\ell_j}/2, s_{\ell_j}/2]^2$ from $\mathbb{R}^2 \setminus \left(q_j + [-3s_{\ell_j}/2, 3s_{\ell_j}/2]^2\right)$ and at least one of the vertical sides of R is contained in $\mathbb{R}^2 \setminus \left(q_j + [-3s_{\ell_j}/2, 3s_{\ell_j}/2]^2\right)$.

Let us first assume that $q_j + [-3s_{\ell_j}/2, 3s_{\ell_j}/2]^2$ lies completely in R. Let z_1, respectively z_2, be the first, respectively last, intersection point of γ and β_j. Here first and last refers to the order in which we encounter the intersection points as we traverse γ from the left side to the right side of R. Let γ_1 be the piece of γ between the left side of R and z_1 and let γ_2 be the piece of γ between z_2 and the right side of R. See Figure 4 for a depiction.

![Figure 4: The curves γ_1 and γ_2 (not to scale).](image)

Observe that β_j is path-connected, so in particular we can find a polygonal curve $\beta'_j \subseteq \beta_j$ between z_1 and z_2. Clearly $\gamma' := \gamma_1 \cup \beta'_j \cup \gamma_2$ is a black, horizontal crossing of R all of whose
points are at distance at least two from \(q_j \).

Next, we suppose that \(q_j + [-3s_{\ell_j}/2, 3s_{\ell_j}/2]^2 \) intersects one of the horizontal sides of \(R \) but none of the vertical sides. Without loss of generality it intersects the lower side of \(R \). Note that the rectangles \(R_{i, j}^\leftarrow \cap R \) and \(R_{i, j}^\rightarrow \cap R \) must have black, vertical crossings \(\tilde{\beta}_j^\leftarrow \subseteq \beta_j^\leftarrow \) and \(\tilde{\beta}_j^\rightarrow \subseteq \beta_j^\rightarrow \). Also note that \(\gamma \) must intersect \(\tilde{\beta}_j^\rightarrow \cup \tilde{\beta}_j^\top \cup \tilde{\beta}_j^\rightarrow \) and \(\tilde{\beta}_j \) is path-connected. Defining \(z_1, z_2, \gamma_1, \gamma_2 \) analogously to before and letting \(\beta_j' \subseteq \beta_j \) be a path between \(z_1 \) and \(z_2 \), we find that \(\gamma' := \gamma_1 \cup \beta_j' \cap \gamma_2 \) is a black horizontal crossing of \(R \) all of whose points are at distance at least two from \(q_j \).

Finally, we suppose that \(q_j + [-3s_{\ell_j}/2, 3s_{\ell_j}/2]^2 \) intersects a vertical side of \(R \). Without loss of generality we can assume it is the left side. Then \(\tilde{\gamma} := \gamma \cup \{(-x,y) : (x,y) \in \gamma \} \) is a crossing of \(\tilde{R} := [-3s_m, 3s_m] \times [0, s_m] \) and \(q_j + [-3s_{\ell_j}/2, 3s_{\ell_j}/2]^2 \) intersects neither of the vertical sides of \(\tilde{R} \). Arguing as above there is a \(\tilde{\gamma} \subseteq \tilde{\gamma} \cup c_j \) that is a crossing of \(\tilde{R} \) and stays at distance at least two from \(q_j \). But then \(\tilde{\gamma} \) also contains a crossing \(\gamma \subseteq \gamma' \) of \(R \). We must have \(\gamma' \subseteq \gamma \cup c_j \) by construction, so it is the desired black horizontal crossing of \(R \) all of whose points are at distance at least two from \(q_j \).

We have thus shown that \(\omega' \in B \). As \(\omega' \) is an arbitrary \(k \)-perturbation of \(\omega \), we have \(\omega \in B^{(k)} \) as required. \(\blacksquare \)

We now observe that Claim 4.2 together with (4) and (5) implies that

\[
\begin{align*}
&\mathbb{P}_{\mathbb{P}(t)} \left[H_{3s_m \times s_m}^{(k)} \mid X_{i_1} = \cdots = X_{i_K} = b \right] - \mathbb{P}_{\mathbb{P}(t)} \left[H_{3s_m \times s_m}^{(k)} \right] \\
&\leq \mathbb{P}_{\mathbb{P}(t)} \left[H_{3s_m \times s_m}^{(k)} \mid X_{i_1} = \cdots = X_{i_K} = b \right] - \mathbb{P}_{\mathbb{P}(t)} \left[H_{3s_m \times s_m}^{(k)} \cap E \right] \\
&+ \mathbb{P}_{\mathbb{P}(t)} \left[H_{3s_m \times s_m}^{(k)} \cap E \right] - \mathbb{P}_{\mathbb{P}(t)} \left[H_{3s_m \times s_m}^{(k)} \right] \\
&\leq \mathbb{P}_{\mathbb{P}(t)} \left[H_{3s_m \times s_m}^{(k)} \mid X_{i_1} = \cdots = X_{i_K} = b \right] - \mathbb{P}_{\mathbb{P}(t)} \left[H_{3s_m \times s_m}^{(k)} \mid X_{i_1} = \cdots = X_{i_K} = b \right] \\
&\leq 2\delta/3,
\end{align*}
\]

contradicting (3). This contradiction proves that \(F(1) \geq 1 - \alpha \) as required. \(\blacksquare \)

5 The proof of Theorem 1.1

That percolation does not occur (a.s.) for \(p \leq 1/2 \) has already been proved by Hirsch [6]. With Proposition 4.1 in hand, that percolation occurs (a.s.) when \(p > 1/2 \) follows from a standard argument involving a comparison to 1-dependent percolation. (See for instance [3], pages 73–75 and bottom of page 287.)

6 Other confetti shapes.

Here we briefly describe the changes that need to be made in order for our proof the work for a more wide range of confetti shapes. Theorem 2.4 a key ingredient to our proof of
Theorem 1.1 was in fact proved by Hirsch [6] under rather general assumptions on the shape of the confettis. In the definition of the confetti process, instead of centering a horizontal disk on each point of the set $P = \{p_1, p_2, \ldots\}$, we can fix a “shape” $A \subseteq \mathbb{R}^2$ and define collection C_1, C_2, \ldots by $C_i = p_i + A$, colour each C_i black with probability p and white with probability $1 - p$ and then determine the colour of each point of the plane as before. Let us consider the following list of axioms that we would like our confetti shape A to satisfy:

1. A is homeomorphic to the unit disk;
2. A is invariant under rotations by $\pi/2$ and reflections in the coordinate axes;
3. A is locally star-shaped, in the sense that for every $z \in A$ there is an open set $U \subseteq \mathbb{R}^2$ such that $z \in A \cap U$ and $A \cap U$ is star-shaped with center z;
4. ∂A is a Borel subset of \mathbb{R}^2 with finite one-dimensional Hausdorff measure;
5. The sets $\{x \in \mathbb{R}^2 : |\partial A \cap (x + \partial A)| = \infty\}$ and $\{x \in \mathbb{R}^2 : A \cap (x + A) \text{ is not regular-open}\}$ have Lebesgue measure zero.

Our Theorem 1.1 in fact generalizes to:

Theorem 6.1 If the confetti shape A satisfies the axioms (A-1)–(A-5), then $p_c = 1/2$.

It is not hard to see that our set of axioms implies the more general set of axioms listed by Hirsch at the beginning of Section 2 in [6]. In particular we know that Lemma 2.3, Theorem 2.4 and $p_c \geq 1/2$ (Proposition 7 in [6]) hold in our setting. We will now sketch the changes that need to be made to adapt our proof of $p_c \leq 1/2$ to the case of confetti shapes that satisfy the axioms (A-1)–(A-5).

First, we remark that Lemma 2.2 also holds in our new setting with more general shapes. (In fact, Bordenave et al. [1] prove it in even greater generality.) Property (C-1) still holds if we substitute “circle segment” by “segment of ∂A”. This follows from (A-1) and (A-5). Similarly, (C-2) still holds by (A-5). (Almost surely, no point is on the boundary of three or more projected confetti leafs since the first set in (A-5) has measure zero. The other conceivable way in which there could be a point on the boundary of three or more cells would be if two projected confetti leafs were to have only that point in common – or more precisely, if the intersection of both projected leafs with an open disk on the plane contains only that point. But, almost surely, this does not happen because the second set in (A-5) has measure zero.)

We now see that the proof of Lemma 3.3 carries through verbatim if we make the substitutions: $||q - \pi(p_i)|| \leq 1$ by $q \in \pi(p_i) + A$; $||q - \pi(p_i)|| < 1$ by $q \in \pi(p_i) + \text{int } A$; $||q - \pi(p_i)|| < 1 - \varepsilon$ by $B(q, \varepsilon) \subseteq \pi(p_i) + A$; $||q - \pi(p_j)|| > 1 + \varepsilon$ by $B(q, \varepsilon) \subseteq \mathbb{R}^2 \setminus \pi(p_i) + A$. The rest of the proof of Proposition 4.1 then also carries through without any further changes.

In the proof of Proposition 3.1 the only things we may need to change are the constants $1000, 100, 50$ and 2 (the last constant occuring in the sentence after (4) and in the proof of Claim 4.2 as an upper bound on the distance needed between two points for their colours to be independent), to adjust for the new confetti shape A. Multiplying these constants by $\max(\text{diam}(A), 1)$ will clearly do.

Acknowledgements

I would like to thank Siamak Taati and Fabian Ziltener for helpful discussions related to the paper, and Ryan O’Donnel for helpful e-mail conversations.
The proof of Proposition 2.1

Here we provide a proof of Proposition 2.1. We will make use of an extension of Bourgain’s sharp threshold result to general finite probability spaces that can be found in O’Donnell’s new book [9]. Before we can state that result we need to give some more definitions.

Throughout the remainder of this section, \((V, \pi)\) will denote a finite probability space. That is, a finite set \(V\) equipped with a probability measure \(\pi\). If \((V_1, \pi_1), \ldots, (V_n, \pi_n)\) are such finite probability spaces, then we denote by \(\pi_1 \otimes \cdots \otimes \pi_n\) the probability distribution of the random vector \(X = (X_1, \ldots, X_n) \in V_1 \times \cdots \times V_n\) whose coordinates are independent with \(X_i \sim \pi_i\). If \(\pi_1 = \cdots = \pi_n = \pi\) then we also write \(\pi^\otimes n\). We define the total influence of a function \(f : V_1 \times \cdots \times V_n \to \{0, 1\}\) (wrt. \(\pi_1, \ldots, \pi_n\)) as

\[
I(f) := \sum_{i=1}^{n} \mathbb{P} \left[f(X_1, \ldots, X_n) \neq f(X_1, \ldots, X_{i-1}, Y_i, X_{i+1}, \ldots, X_n) \right],
\]

where \((X_1, \ldots, X_n), (Y_1, \ldots, Y_n) \sim \pi_1 \otimes \cdots \otimes \pi_n\) are independent.

For \(x \in V_1 \times \cdots \times V_n, T \subseteq \{1, \ldots, n\}\), we denote by \(x_T := (x_i)_{i \in T}\) the projection of \(x\) onto the coordinates in \(T\). For \(T \subseteq \{1, \ldots, n\}\) and \(\tau > 0\), we say that a vector \(z \in \prod_{i \in T} V_i\) is a \(\tau\)-booster if \(\mathbb{E} \left[f(X_1, \ldots, X_n) | X_i = z_i, \forall i \in T \right] \geq \mathbb{E}f(X_1, \ldots, X_n) + \tau\). For \(\tau < 0\), the vector \(z \in \prod_{i \in T} V_i\) is a \(\tau\)-booster if instead \(\mathbb{E} \left[f(X_1, \ldots, X_n) | X_i = z_i, \forall i \in T \right] \leq \mathbb{E}f(X_1, \ldots, X_n) + \tau\).

We are now ready to present the generalized version of Bourgain’s sharp threshold theorem. The original version in [5] was stated only for the case when \(V = \{0, 1\}\), but as noted in [9],...
the proof in fact generalizes to arbitrary V. The following is a slight reformulation of the generalized version that can be found on page 303 of [9].

Theorem A.1 ([9]) There exist absolute constants $c_1, c_2 > 0$ such that the following holds for every finite set V, every probability measure π on V, every integer $n \in \mathbb{N}$ and every function $f : V^n \to \{0, 1\}$. If $\text{Var}(f(X)) \geq \frac{1}{300}$ then either

(a) $\mathbb{P}[\exists T \subseteq \{1, \ldots, n\}, |T| \leq c_1 I(f), \text{ such that } X_T \text{ is a } \tau \text{-booster}] \geq \tau$, or

(b) $\mathbb{P}[\exists T \subseteq \{1, \ldots, n\}, |T| \leq c_1 I(f), \text{ such that } X_T \text{ is a } (-\tau)\text{-booster}] \geq \tau$,

where $\tau = \exp[-c_2 I^2(f)]$ and $X = (X_1, \ldots, X_n) \sim \pi \otimes \cdots \otimes \pi$.

We have chosen to consider functions with values in $\{0, 1\}$, while in [9] the theorem is stated in terms of $\{-1, 1\}$-valued functions. It is however clear that if f is $\{0, 1\}$-valued then $g := 2f - 1$ is $\{-1, 1\}$-valued, $\text{Var}(g) = 4 \text{Var}(f)$ and x is a τ-booster for f if and only if it is a 2τ-booster for g. We should also mention that our definition of total influence is different from the one given in [9]. That the two definitions are equivalent follows Proposition 8.24 on page 204 of [9].

The last theorem also extends to asymmetric situations.

Corollary A.2 There exist absolute constants $c_1, c_2 > 0$ such that the following holds for all $n \in \mathbb{N}$, all $(V_1, \pi_1), \ldots, (V_n, \pi_n)$ and every function $f : V_1 \times \cdots \times V_n \to \{0, 1\}$. If $\text{Var}(f) \geq \frac{1}{300}$ then either

(a) $\mathbb{P}[\exists T \subseteq \{1, \ldots, n\}, |T| \leq c_1 I(f), \text{ such that } X_T \text{ is a } \tau \text{-booster}] \geq \tau$, or

(b) $\mathbb{P}[\exists T \subseteq \{1, \ldots, n\}, |T| \leq c_1 I(f), \text{ such that } X_T \text{ is a } (-\tau)\text{-booster}] \geq \tau$,

where $\tau = \exp[-c_2 I^2(f)]$ and $X = (X_1, \ldots, X_n) \sim \pi_1 \otimes \cdots \otimes \pi_n$.

Proof: We set $V := V_1 \times \cdots \times V_n, \pi = \pi_1 \otimes \cdots \otimes \pi_n$ and we define $g : V^n \to \{-1, 1\}$ by $g(z_1, \ldots, z_n) := f(z_1, \ldots, z_{n,n})$, where $z_{i,j}$ denotes the j-th coordinates of z_i. Clearly, Theorem A.1 applies to this new situation.

If $Z_1, \ldots, Z_n, Z'_1, \ldots, Z'_n \sim \pi$ are independent, then, for every $1 \leq i \leq n$

$$\mathbb{P}[g(Z_1, \ldots, Z_n) \neq g(Z_1, \ldots, Z_{i-1}, Z'_i, Z_{i+1}, \ldots, Z_n)]$$

$$= \mathbb{P}[f(Z_1, \ldots, Z_{n,n}) \neq f(Z_1, \ldots, Z_{i-1,i-1}, Z'_i, Z_{i+1,i+1}, \ldots, Z_{n,n})].$$

Since $(Z_1, \ldots, Z_{n,n}),(Z'_1, \ldots, Z'_{n,n}) \sim \pi_1 \otimes \cdots \otimes \pi_n$ by construction, it follows that $I(g) = I(f)$. Similary, taking $X = (X_1, \ldots, X_n) \sim \pi_1 \otimes \cdots \otimes \pi_n$, we find that $\mathbb{E}g(Z_1, \ldots, Z_n) = \mathbb{E}f(X_1, \ldots, X_n)$ and

$$\mathbb{P}[\exists T \subseteq \{1, \ldots, n\}, |T| \leq c_1 I(g), \text{ such that } Z_T \text{ is a } \tau\text{-booster wrt. } g]$$

$$= \mathbb{P}[\exists T \subseteq \{1, \ldots, n\}, |T| \leq c_1 I(f), \text{ such that } X_T \text{ is a } \tau\text{-booster wrt. } f],$$

where c_1 is as provided by Theorem A.1. This concludes the proof of the corollary. □

Let us note that the number $\frac{1}{300}$ in Theorem A.1 and Corollary A.2 could have been replaced by any other number (at the expense of changing the constants c_1, c_2). This can of course be seen from the proof of Theorem A.1 but it can also be derived from the statement in a straightforward way. For completeness we prefer to spell out the details.
Corollary A.3 For every $0 < \alpha < 1/2$ and $C > 0$, there exist constants $K = K(\alpha, C) \in \mathbb{N}, \delta = \delta(\alpha, C) > 0$ such that the following holds for all $n \in \mathbb{N}$, all $(V_1, \pi_1), \ldots, (V_n, \pi_n)$ and every function $f : V_1 \times \cdots \times V_n \to \{0, 1\}$.

If $P[f(X) = 1] \in (\alpha, 1 - \alpha)$ and $I(f) \leq C$ then there exist indices $1 \leq i_1, \ldots, i_K \leq n$ and values $x_{i_1} \in V_{i_1}, \ldots, x_{i_K} \in V_{i_K}$ such that one of the following holds:

(a) $P[f(X) = 1 | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] \geq P[f(X) = 1] + \delta$, or

(b) $P[f(X) = 1 | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] \leq P[f(X) = 1] - \delta$.

where $X = (X_1, \ldots, X_n) \sim \pi_1 \otimes \cdots \otimes \pi_n$.

Proof: Let us first remark that $\text{Var}(f) \leq \frac{1}{400}$ if and only if $P(f = 1) \in (\alpha_0, 1 - \alpha_0)$, where $\alpha_0 := (1 - \sqrt{99/100})/2 \approx 0.0025$ is the smaller of the two solutions to $x(1 - x) = \frac{1}{400}$. Hence, if $P(f = 1) \in (\alpha_0, 1 - \alpha_0)$ then the result is an immediate consequence of Corollary A.2 setting $K := c_1 \cdot C$ and $\delta := \exp[-c_2 \cdot C^2]$.

Let us thus assume that $(\alpha < \alpha_0$ and $P(f = 1) \in (\alpha_0, 1 - \alpha_0)$. Switching to $g := 1 - f$ if necessary (observe that this transformation leaves the total influence intact, and (a) holds for f if and only if (b) holds for g, and similarly with f, g switched), we can assume without loss of generality that $1 - \alpha_0 \leq P(f = 1) < 1 - \alpha$.

We now set $k := \lceil \log(1 - \alpha_0) / \log(\mathbb{E} f) \rceil$ and $k_0 := \lfloor \log(1 - \alpha_0) / \log(1 - \alpha) \rfloor$ (Observe that $k \leq k_0$ and k_0 depends only on α but not on n, f, the V_i's or π_i's.). We define

$$g := \prod_{i=1}^{k} f(X_{(i-1)n+1}, \ldots, X_{in}),$$

where X_1, \ldots, X_{kn} are independent with $X_{jn+i} \sim \pi_i$ for all $0 \leq j \leq k - 1, 1 \leq i \leq n$. We have

$$\mathbb{E} g = (\mathbb{E} f)^k \in (\alpha_0, 1 - \alpha_0),$$

so that Corollary A.2 applies to g. Hence there are indices $0 \leq i_1, \ldots, i_K \leq kn$ and values x_{i_1}, \ldots, x_{i_K} such that

$$\mathbb{E}[g | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] - \mathbb{E} g \geq \tau,$$

where $K := c_1 \cdot C$ and $\tau = \exp[-c_1 \cdot C^2]$ with c_1, c_2 as provided by Corollary A.2.

Let us first suppose that $\mathbb{E}[g | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] \geq \mathbb{E} g + \tau$. We have

$$\mathbb{E}[g(X_1, \ldots, X_{kn}) | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] = \prod_{j=1}^{k} \mathbb{E}[f(X_{(j-1)n+1}, \ldots, X_{jn}) | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}].$$

There must be a $1 \leq j \leq k$ such that $\mathbb{E}[f(X_{(j-1)n+1}, \ldots, X_{jn}) | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] \geq \mathbb{E} f + \frac{\tau}{k_0 2^{k_0}}$. This is because otherwise we would have

$$\mathbb{E}[g | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] \leq \left(\mathbb{E} f + \frac{\tau}{k_0 2^{k_0}} \right)^k \leq (\mathbb{E} f)^k + \tau/2,$$

using that $\frac{d}{dx}(\mathbb{E} f + x)^k$ is at most $k2^{k-1}$ for $x \in [0, 1]$, so that $(\mathbb{E} f + x)^k \leq (\mathbb{E} f)^k + xk2^{k-1}$ for all $x \in [0, 1]$. Relabelling if necessary, we can assume without loss of generality that $j = 1$. Hence we have
\[\mathbb{E}[f(X_1, \ldots, X_n)|X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] \geq \mathbb{E}f(X_1, \ldots, X_n) + \frac{\tau}{k_02^{k_0}}. \]

It may be that some indices \(i_j \) are bigger than \(n \). But in that case the value \(X_{i_j} \) is irrelevant to \(f(X_1, \ldots, X_n) \). To match into the framework of the Corollary we can just set \(i_j = i_j' \) and \(x_{i_j} = x_{i_j'} \) for some index \(i_j' \leq n \).

Suppose then that \(\mathbb{E}[g|X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] \leq \mathbb{E}g - \tau \). Similarly to before, there is a \(1 \leq j \leq k \) such that \(\mathbb{E}[f(X_{(j-1)n+1}, \ldots, X_{jn})|X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}] \leq \mathbb{E}f - \frac{\tau}{k_02^{k_0}} \). We can continue as in the previous case.

This proves that the corollary indeed holds with \(K = c_1 \cdot C \) and \(\delta = \exp[-c_2 \cdot C^2]/k_02^{k_0} \).

Our next ingredient is the well-known Margulis-Russo formula. For completeness we give the short proof.

Lemma A.4 (Margulis-Russo formula) Suppose that \(f : \{0, 1\}^n \to \{0, 1\} \) is non-decreasing (coordinatewise). For \(\bar{p} = (p_1, \ldots, p_n) \in (0, 1)^n \) we have

\[\frac{\partial}{\partial p_i} \mathbb{P}(\bar{f}(X_1, \ldots, X_n) = 1) = \frac{1}{2p_i(1 - p_i)} \mathbb{P}(\bar{f}(X_1, \ldots, X_n) \neq f(X_1, \ldots, X_i = 1, X_{i-1}, Y, X_{i+1}, \ldots, X_n)), \]

where \(X_1, \ldots, X_n, Y \) are independent and \(X_j \sim \text{Be}(p_j) \) for all \(1 \leq j \leq n \) and \(Y \sim \text{Be}(p_i) \).

Proof: Let us set

\[
A_0 := \{(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in \{0, 1\}^{n-1} : f(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) = 1\},
\]

\[
A_1 := \{(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in \{0, 1\}^{n-1} : f(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) = 0, f(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) = 1\}.
\]

It follows from nondecreasingness that if \(f(x_1, \ldots, x_n) = 1 \) then \((x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in A_0 \cup A_1 \). We observe that

\[
\mathbb{P}(\bar{f}(X_1, \ldots, X_n) = 1) = \sum_{\pi \in A_0} \prod_{j \neq i} p_j^{x_j} (1 - p_j)^{1-x_j} + \sum_{\pi \in A_1} p_i \prod_{j \neq i} p_j^{x_j} (1 - p_j)^{1-x_j}.
\]

Hence we have

\[\frac{\partial}{\partial p_i} \mathbb{P}(\bar{f}(X_1, \ldots, X_n) = 1) = \sum_{\pi \in A_1} \prod_{j \neq i} p_j^{x_j} (1 - p_j)^{1-x_j}. \quad (6) \]

On the other hand, we have that

\[\mathbb{P}(\bar{f}(X_1, \ldots, X_n) \neq f(X_1, \ldots, X_{i-1}, Y, X_{i+1}, \ldots, X_n)) = 2p_i(1 - p_i) \sum_{\pi \in A_1} \prod_{j \neq i} p_j^{x_j} (1 - p_j)^{1-x_j}. \quad (7) \]

The result follows immediately from (6) and (7). ■
We now have all the ingredients for a quick proof of Proposition 2.1. For completeness we spell out the details.

Proof of Proposition 2.1. The up-set \(A \subseteq \{0,1\}^n \) corresponds to a function \(f : \{0,1\}^n \rightarrow \{0,1\} \) that is one if and only if its input is in \(A \). This function \(f \) is non-decreasing since \(A \) is an up-set. By the Margulis-Russo formula we have that

\[
I(f) = 2 \sum_{i=1}^{n} p_i (1 - p_i) \cdot \frac{\partial}{\partial p_i} \mathbb{P}[(X_1, \ldots, X_n) \in A].
\]

Also observe that, since \(f \) is non-decreasing, we have

\[
\mathbb{P}(f(X) = 1 | X_{i_1} = \cdots = X_{i_K} = 1) \geq \mathbb{P}(f(X) = 1 | X_{i_1} = x_{i_1}, \ldots, X_{i_K} = x_{i_K}) \geq \mathbb{P}(f(X) = 1 | X_{i_1} = \cdots = X_{i_K} = 0),
\]

for all \(x_{i_1}, \ldots, x_{i_K} \in \{0,1\} \).

Proposition 2.1 is thus a direct corollary of Corollary A.3. \(\blacksquare \)

B The proof of Lemma 3.4

Proof of Lemma 3.4. Let us fix \(\varepsilon > 0 \). By continuity of \(f \), for each \(x \in I \) then is a set \(U_x = [a_1, b_1] \times \cdots \times [a_d, b_d] \subseteq I \) such that \(x \in O_x := \text{int}_I(U_x) \) (we take the interior in the relative topology of \(I \)), and \(|f(x') - f(x)| < \varepsilon / 2 \) for all \(x' \in U_x \). Since \(f_k \rightarrow f \) pointwise and \(f_{k+1} \geq f_k \), there is a \(k_0(x) \) such that \(f_k(a_1, \ldots, a_d) \geq f(a_1, \ldots, a_d) - \varepsilon / 2 \) for all \(k \geq k_0(x) \).

By the nondecreasingness of \(f_k \) we also have that \(f_k(x') \geq f(a_1, \ldots, a_d) - \varepsilon / 2 \geq f(x') - \varepsilon \) for all \(x' \in U_x \) and all \(k \geq k_0(x) \).

Since \(I \) is compact and \(\{O_x : x \in I\} \) is an open cover of \(I \), there must be a finite subcover \(\{O_{x_1}, \ldots, O_{x_N}\} \) of \(I \). Setting \(k_0 := \max(k_0(x_1), \ldots, k_0(x_N)) \), it is clear that \(f_k(x) \geq f(x) - \varepsilon \) for every \(x \in I \) and every \(k \geq k_0 \). Also observe that \(f_k(x) \leq f(x) \) for all \(k \) and all \(x \in I \), since \(f_k(x) \) is non-decreasing in \(k \) and converges to \(f(x) \) by assumption. So we have that \(|f_k(x) - f(x)| < \varepsilon \) for all \(x \in I \) and all \(k \geq k_0 \), which proves that \(f_k \) converges uniformly as claimed. \(\blacksquare \)