A counterexample to a conjecture of Grünbaum on piercing convex sets in the plane

Tobias Müller∗

July 22, 2013

Abstract
A collection of sets \(F \) has the \((p,q)\)-property if out of every \(p \) elements of \(F \) there are \(q \) that have a point in common. A transversal of a collection of sets \(F \) is a set \(A \) that intersects every member of \(F \). Grünbaum conjectured that every family \(F \) of closed, convex sets in the plane with the \((4,3)\)-property and at least two elements that are compact has a transversal of bounded cardinality. Here we construct a counterexample to his conjecture. On the positive side, we also show that if such a collection \(F \) contains two disjoint compacta then there is a transversal of cardinality at most 13.

1 Introduction and statement of results

Let \(F \) be a collection of sets. A transversal of \(F \) is a set \(A \) that intersects every member of \(F \) (that is, \(A \cap F \neq \emptyset \) for all \(F \in F \)). The transversal number of piercing number \(\tau(F) \) of \(F \) is the smallest size of a transversal, i.e.

\[
\tau(F) := \min_{A \text{ transversal of } F} |A|.
\]

(Note that \(\tau(F) = \infty \) if no finite transversal exists.)

A collection of sets \(F \) has the \((p,q)\)-property if out of every \(p \) sets of \(F \) there are \(q \) that have a point in common. In 1957, Hadwiger and Debrunner [2] conjectured that for every \(d \) and every \(p \geq q \geq d + 1 \) there is a universal constant \(c = c(d;p,q) \) such that every finite collection \(F \) of convex sets in \(\mathbb{R}^d \) with the \((p,q)\)-property satisfies \(\tau(F) \leq c \). (By considering hyperplanes in general position it is easily seen that for \(q \leq d \) no such universal constant \(c \) can exist.) Many years later, in 1992, Alon and Kleitman [1] finally proved the conjecture of Hadwiger and Debrunner by cleverly combining various pre-existing tools from the literature.

In the special case when \(p = q = d + 1 \) the Hadwiger-Debrunner conjecture reduces to the classical theorem of Helly [3] which states that if \(F \) is a finite family of convex sets in \(\mathbb{R}^d \) such that every \(d + 1 \) members of \(F \) have a point in common then \(\tau(F) = 1 \). A variant of Helly’s theorem states that if \(F \) is an infinite collection of closed, convex sets in \(\mathbb{R}^d \) and at least one member of \(F \) is compact then \(\tau(F) = 1 \).

Erdős conjectured that in the first nontrivial case of the Hadwiger-Debrunner problem, a similar variant would be true. That is, he conjectured that if \(F \) is a collection of closed, convex sets in the plane with the \((4,3)\)-property and one of the members of \(F \) is compact, then \(\tau(F) \leq c \) for some universal constant \(c \). Boltyanski and Soifer included this conjecture in the first edition of their book “Geometric Etudes in Combinatorial Mathematics” and they offered a prize of $25 for its solution. Eighteen years later, Grünbaum found a counterexample while proofreading the second edition, earning the reward. Grünbaum also made a conjecture of his own, stating that if \(F \) is a collection of closed, convex sets in the plane, and two members of \(F \) are compact then \(\tau(F) \) is finite. (See [5], pages 198-199.) Here we show that Grünbaum’s conjecture fails as well:

∗Utrecht University. E-mail: t.muller@uu.nl. Supported in part by a VENI grant from Netherlands Organisation for Scientific Research (NWO)
Theorem 1 There exists a collection \mathcal{F} of closed, convex subsets of the plane such that

(i) \mathcal{F} has the $(4,3)$-property, and;

(ii) Two of the elements of \mathcal{F} are compact, and;

(iii) $\tau(\mathcal{F}) = \infty$.

On the positive side, we show that any collection \mathcal{F} of closed, convex sets in the plane that contains two disjoint compacta and satisfies the $(4,3)$-property does have universally bounded transversal number:

Theorem 2 If \mathcal{F} is a collection of closed, convex sets in the plane such that

(i) \mathcal{F} has the $(4,3)$-property, and;

(ii) \mathcal{F} contains two disjoint compacta,

then $\tau(\mathcal{F}) \leq 13$.

2 The counterexample

Let us set

$$F_1 := [-1,1] \times \{0\}, \quad F_2 := [0,2] \times \{0\}.$$

Let $t_1 < t_2 < t_3 < \ldots$ be a strictly increasing sequence of numbers between 0 and 1, and let $s_1 > s_2 > \ldots$ be a strictly decreasing sequence of negative numbers that tends to $-\infty$. (For instance $t_n := 1 - \frac{1}{n}, s_n := -n$ would be a valid choice.) Set $p_n := (t_n,0)$; let ℓ_n denote the vertical line through p_n, and let ℓ_n' denote the line through p_n of slope s_n.

For $n \geq 3$ we now let F_n be the set of all points either on or to the left of ℓ_n and either on or above ℓ_n'. See figure 1.

![Figure 1: The construction of F_n for $n \geq 3$ (left) and part of the collection \mathcal{F} (right).](image)

Observe that by construction F_n contains all sufficiently high points on the y-axis for all $n \geq 3$:

For each $n \geq 3$ there exists a $y_n > 0$ such that $\{(0,y) : y \geq y_n\} \subseteq F_n$. \hfill (1)

Let $\mathcal{F} := \{F_1, F_2, \ldots\}$ be the resulting infinite collection of closed convex sets. We first establish that \mathcal{F} has the $(4,3)$-property.
Lemma 3 \(\mathcal{F} \) has the \((4,3)\)-property.

Proof: Let us pick four arbitrary distinct indices \(i_1 < i_2 < i_3 < i_4 \) and consider the quadruple \(F_{i_1}, F_{i_2}, F_{i_3}, F_{i_4} \in \mathcal{F} \).

If \(i_1 = 1 \) and \(i_2 = 2 \) then clearly \(F_{i_1} \cap F_{i_2} \cap F_{i_3} = \{p_{i_3}\} \), so that \(F_{i_1}, F_{i_2}, F_{i_3} \) is an intersecting triple. We can thus assume that \(i_2, i_3, i_4 > 2 \). In this case \(F_{i_2} \cap F_{i_3} \cap F_{i_4} \neq \emptyset \) by the observation (1).

It remains to show that \(\mathcal{F} \) does not have a finite transversal.

Lemma 4 \(\tau(\mathcal{F}) = \infty \).

Proof: It suffices to show that every point of the plane is in finitely many elements of \(\mathcal{F} \). Let \(a = (a_x, a_y) \in \mathbb{R}^2 \) be arbitrary. If \(a_y \leq 0 \) then \(a \) is in at most three elements of \(\mathcal{F} \). Let us therefore assume \(a_y > 0 \). In this case, if \(a_x \geq t_n \) for all \(n \in \mathbb{N} \) then \(a \) is in no element of \(\mathcal{F} \). Let us therefore assume that there is at least one \(n \in \mathbb{N} \) such that \(a_x < t_n \). Let us fix an \(n_0 \) such that \(a_x < t_{n_0} \), and set

\[
 s := -\frac{a_y}{t_{n_0} - a_x}.
\]

(Note that \(s \) is exactly the slope of the line through \(a \) and \(p_{n_0} \).) Since \(s_n \to -\infty \), there is an \(m_0 \) such that \(s_n < s \) for all \(n \geq m_0 \).

Observe that for all \(n \geq \max(n_0, m_0) \) the point \(a \) is below the line \(t'_n \) (as the point \(p_n \) is to the right of \(p_{n_0} \) and \(t'_n \) has a steeper slope than \(s \)). This shows that \(a \notin F_n \) for all \(n \geq \max(n_0, m_0) \). Hence \(a \) is in infinitely many elements of \(\mathcal{F} \) as required.

Remark: By adding additional compact sets to \(\mathcal{F} \) that each contain \([0, 1] \times \{0\}\) we can obtain a collection \(\mathcal{F}' \) that contains an arbitrary number of compacta, and still has the \((4,3)\)-property and \(\tau(\mathcal{F}') = \infty \).

3 The proof of Theorem 2

The proof of the Hadwiger-Debrunner conjecture by Alon and Kleitman [1] does not give a good bound on the universal constant \(c \). A better bound on this constant for the special case when \(p = 4, q = 3 \) was later given by Kleitman, Gyárfás and Tóth [4].

Theorem 5 (Kleitman et al. [4]) If \(\mathcal{F} \) is a finite collection of convex sets in the plane with the \((4,3)\)-property then \(\tau(\mathcal{F}) \leq 13 \).

A standard compactness argument (which we do not repeat here) shows that the same also holds if \(\mathcal{F} \) is an infinite collection of convex compacta with the \((4,3)\)-property.

Corollary 6 If \(\mathcal{F} \) is an infinite collection of convex, compact sets in the plane and \(\mathcal{F} \) has the \((4,3)\)-property then \(\tau(\mathcal{F}) \leq 13 \).

Proof of Theorem 2: Let \(\mathcal{F} \) be an arbitrary infinite collection of closed, convex sets with the \((4,3)\)-property with two sets \(A, B \in \mathcal{F} \) that are disjoint and compact. Let us set

\[
 F_0 := \text{conv}(A \cup B).
\]

Let us first observe that

\[
 F \cap F_0 \neq \emptyset \quad \text{for all} \quad F \in \mathcal{F}. \quad (2)
\]

To see this, suppose that some \(F \in \mathcal{F} \) is disjoint from \(F_0 \), and let \(F' \in \mathcal{F} \) be an arbitrary element distinct from \(F, F_1, F_2 \) and \(F_0 \). Then the quadruple \(F_1, F_2, F, F' \) does not have an intersecting
triple as every triple contains a pair of disjoint sets. But this contradicts the (4,3)-property! Hence (2) holds as claimed.

Next, we claim that

$$\text{If } F_1, F_2, F_3 \in \mathcal{F} \text{ are such that } F_1 \cap F_2 \cap F_3 \neq \emptyset \text{ then also } F_0 \cap F_1 \cap F_2 \cap F_3 \neq \emptyset. \quad (3)$$

To see that the claim (3) holds, consider an arbitrary triple F_1, F_2, F_3 such that $F_1 \cap F_2 \cap F_3 \neq \emptyset$. Let us assume $F_1 \cap F_2 \cap F_3 \subseteq F_0$ (otherwise we are done), and fix a $q \in (F_1 \cap F_2 \cap F_3) \setminus F_0$. By considering the quadruple A, B, F_1, F_2 we see that we either have $A \cap F_1 \cap F_2 \neq \emptyset$ or $B \cap F_1 \cap F_2 \neq \emptyset$.

In either case, there is a point $p_{12} \in F_0 \cap F_1 \cap F_2$. Similarly there are points $p_{13} \in F_0 \cap F_1 \cap F_2, p_{23} \in F_0 \cap F_2 \cap F_3$.

By Radon’s lemma the set $\{q, p_{12}, p_{13}, p_{23}\}$ can be partitioned into two sets whose convex hulls intersect. Note that we cannot have that $q \in \text{conv}(\{p_{12}, p_{13}, p_{23}\})$ since $q \notin F_0$ and $p_{12}, p_{13}, p_{23} \in F_0$ and F_0 is convex. Hence, up to relabelling of the indices we have either $p_{23} \in \text{conv}(\{q, p_{12}, p_{13}\})$ or $[q, p_{23}] \cap [p_{12}, p_{13}] \neq \emptyset$.

In the first case we have that $p_{23} \in F_0 \cap F_1 \cap F_2 \cap F_3$ since we have chosen $p_{23} \in F_0 \cap F_2 \cap F_3$ and $\text{conv}(\{q, p_{12}, p_{13}\}) \subseteq F_1$ as all three of q, p_{12}, p_{13} are in F_1 and F_1 is convex.

In the second case we have that the intersection point of $[q, p_{23}]$ and $[p_{12}, p_{13}]$ is in $F_0 \cap F_1 \cap F_2 \cap F_3$. This is because $[q, p_{23}] \subseteq F_2 \cap F_3$ and $[p_{12}, p_{13}] \subseteq F_0 \cap F_1$.

Thus, (3) holds as claimed.

We now define a new collection of sets by setting:

$$\mathcal{F}^\prime := \{F \cap F_0 : F \in \mathcal{F}\}.$$

Since the members of \mathcal{F} are closed and convex and F_0 is compact and convex, each element of \mathcal{F}^\prime is compact and convex. By (2) each set of \mathcal{F}^\prime is nonempty (this is needed since otherwise there cannot be any transversal of \mathcal{F}^\prime), and by (3) together with the fact that \mathcal{F} satisfies the $(4,3)$-property, the collection \mathcal{F}^\prime also satisfies the $(4,3)$-property. The theorem now follows from Corollary 6 as every transversal of \mathcal{F}^\prime is also a transversal of \mathcal{F}.

\section*{Acknowledgement}

I thank Bart de Keijzer and Branko Grünbaum for helpful discussions.

\section*{References}

