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Abstract

A graph G on n vertices is a k-dot product graph if there are
vectors u1, . . . , un ∈ Rk, one for each vertex of G, such that uT

i uj ≥ t
if and only if ij ∈ E(G). Fiduccia, Scheinerman, Trenk and Zito asked
whether every planar graph is a 3-dot product graph. We show that
the answer is “no”. On the other hand, every planar graph is a 4-dot
product graph.

1 Introduction and statement of results

We study a type of geometric representation of graphs using vectors from
Rk for some k ∈ N. Let G be a graph with n vertices. We say G is a k-dot
product graph if there exist vectors u1, . . . , un ∈ Rk such that uT

i uj ≥ 1 if
and only if ij ∈ E(G). An explicit set of vectors in Rk that exhibits G in this
way is called a k-dot product representation of G. The dot product dimension
of G is the least k such that there is a k-dot product representation of G.
(Every graph has finite dot product dimension, see for instance [4].)

The well-studied class of threshold graphs is closely related to 1-dot
product graphs: a 1-dot product graph has at most two nontrivial connected
components and each of these components is a threshold graph (see [4]). An
extensive survey of threshold graphs is [7].

Notions closely related to dot product representations were studied in
the context of communications complexity by amongst others Paturi and
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Simon [8], Alon, Frankl and Rödl [1] and Lovász [6]. Partially motivated by
these works on communication complexity, the authors Reiterman, Rödl and
Šiňajová [9, 10, 11] introduced dot product representations of graphs and
studied them extensively. They obtained several bounds for the dot product
dimension in terms of threshold dimension, sphericity, chromatic number,
maximum degree, maximum average degree, and maximum complementary
degree; they also detailed various examples. Here it should be mentioned
that they used a slightly different definition: they used a threshold t ∈ R
(i.e. ij ∈ E(G) if and only if uT

i uj ≥ t). This leads to a slightly larger class
of graphs. However, in most of their constructions Reiterman et al. in fact
take t = 1 and the proofs usually transfer easily to the special case t = 1.
The proofs of our results below can also easily be adapted to work also
for the more general definition of a dot product graph used in [9, 10, 11].
Fiduccia, Scheinerman, Trenk and Zito [4] considered amongst other things
the dot product dimension of bipartite, complete multipartite and interval
graphs.

Both Reiterman et al. [10] and Fiduccia et al. [4] proved that every
forest is a 3-dot product graph. Envisioning a potential extension to this
result, Fiduccia et al. asked whether every planar graph is a 3-dot product
graph. Here we will answer this question in the negative by describing a
counterexample. In contrast, we show that any planar graph has dimension
at most 4.

Theorem 1 Every planar graph is a 4-dot product graph, and there exist
planar graphs which are not 3-dot product graphs.

In the next section we develop some notation and recollect some spherical
geometry needed in Section 3. In Section 3 we present a planar graph that is
not 3-dot product graphs and in Section 4 we show that every planar graph
has a 4-dot product representation.

2 Preliminaries

We shall review some basic geometry on the unit sphere S2. For u, v ∈ S2,
let us denote by [u, v] the (shortest) spherical arc between u and v. Let
distS2(u, v) denote the length of [u, v]. Then distS2(u, v) equals the angle
between the two vectors u, v ∈ S2. It can thus be expressed as

distS2(u, v) = arccos(vTu).

For r ≥ 0, let the spherical cap of radius r around v ∈ S2 be defined as

cap(v, r) := {u ∈ S2 : distS2(u, v) ≤ r}.
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Figure 1: A spherical triangle.

Suppose that u, v, w ∈ S2 are three points on the sphere in general posi-
tion. We shall call the union of the three spherical arcs [u, v], [v, w], [u,w]
a spherical triangle. Let us write a := distS2(u, v), b := distS2(u,w), c :=
distS2(v, w), and let γ denote the angle between [u, v] and [u,w]. See Fig-
ure 1. Recall the spherical law of cosines:

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ). (1)

The spherical law of cosines can be rephrased as

vTw = (uT v) · (uTw) + cos(γ)
√

(1− (uT v)2)(1− (uTw)2). (2)

This second form will be more useful for our purposes.
Similarly to a spherical triangle one can define a spherical k-gon. In the

proof of Theorem 2 below we will make use of the well-known fact that the
sum of the angles of a spherical k-gon is strictly larger than (k − 2)π.

3 A planar graph that is not a 3-dot product graph

We will construct graphs F,G,H as follows.

(i) We start with K4, the complete graph on the four vertices t1, t2, t3, t4.

(ii) To obtain F , we replace each edge titj of K4 by a path titijtjitj of
length three.

(iii) The graph F divides the plane into four faces. To obtain G, we place
an additional vertex inside each face of F and connect it to all vertices
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Figure 2: The graphs G (left) and H (right).

on the outer cycle of the face. Here fi will denote the vertex in the
face whose limiting cycle does not contain ti.

(iv) Finally, to obtain H we attach four leaves to each vertex of G.

The graphs G and H are depicted in Figure 2. For k ∈ N, let the graph Hk

consist of k disjoint copies of H. Clearly Hk is planar for all k. In the rest
of this section we shall prove the following.

Theorem 2 The graph Hk is not a 3-dot product graph for some k ∈ N.

Proof of Theorem 2: The proof is by contradiction. Let us assume that
Hk has a 3-dot product representation for all k. Then the following must
hold.

Claim 3 For every η > 0, there is a 3-dot product representation of H, with
‖u(t)‖ < 1 + η for all t ∈ V (H).

Proof of Claim 3: Suppose the claim is false. Then there must exist a
constant η > 0 such that in every 3-dot product representation u : V (H)→
R3 of H, there is a vertex t ∈ V (H) such that ‖u(t)‖ ≥ 1 + η.

As Hk is the disjoint union of k copies of H, in any 3-dot product rep-
resentation u : V (Hk) → R3, there is a vertex in each of the k copies of
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H whose corresponding vector has length at least 1 + η. Let s1, . . . , sk de-
note these vertices. We know sisj 6∈ E(Hk) for all 1 ≤ i < j ≤ k, and
‖u(si)‖ ≥ 1 + η for all 1 ≤ i ≤ k.

Let us write vi := u(si)/‖u(si)‖ and li := ‖u(si)‖. Since u(si)Tu(sj) < 1,
we must have

vT
i vj <

1
lilj
≤ (1 + η)−2.

Write ρ := arccos((1+η)−2). Note that distS2(vi, vj) > ρ for all 1 ≤ i < j ≤
k. Hence, the spherical caps cap(v1, ρ/2), . . . , cap(vk, ρ/2) must be disjoint
subsets of the sphere. These caps all have the same area, which depends
only on ρ, and hence only on η. Let us denote this area by f(η). It is
possible to express f(η) explicitly in terms of η, but there is no need to do
this here. We get

4π = area(S2) ≥
k∑

i=1

area(cap(vi, ρ/2)) = k · f(η),

which is impossible if we choose k > 4π/f(η). �

Let us fix a small η (say η := 1/1010) and let u : V (H) → R3 be the
representation provided by Claim 3. For s ∈ V (H) let us write l(s) :=
‖u(s)‖, v(s) := u(s)/‖u(s)‖. Let us observe that

st ∈ E(H) if and only if v(s)T v(t) ≥ 1/l(s)l(t).

Note also that each spherical arc corresponding to an edge in H has length
at most ρ = arccos((1 + η)−2). Recall that G ⊆ H is the subgraph induced
by all non-leaf vertices.

Claim 4 For every t ∈ V (G), we have l(t) ≥ 1.

Proof of Claim 4: Suppose that some s ∈ V (G) satisfies l(s) < 1. Let
s1, s2, s3, s4 be the four leaves attached to s, in clockwise order. One of the
angles ∠s1ss2, ∠s2ss3, ∠s3ss4, ∠s4ss1 must be at most π/2 (they sum to
2π). Without loss of generality, we may assume it is γ := ∠s1ss2.

Since cos(γ) ≥ 0, the spherical cosine rule (2) now implies that

v(s1)T v(s2) ≥ (v(s)T v(s1)) · (v(s)T v(s2))

≥
(

1
l(s)l(s1)

)(
1

l(s)l(s2)

)
>

1
l(s1)l(s2)

,

using the property that l(s) < 1 for the last inequality. But then we must
have s1s2 ∈ E(H), a contradiction. �
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Claim 5 Suppose that st, s′t′ ∈ E(G) are edges with s, s′, t, t′ distinct and
suppose that the arcs [v(s), v(t)] and [v(s′), v(t′)] cross. Then at least one of
ss′, st′, ts′, tt′ is also an edge of G.

Proof of Claim 5: Suppose the arcs [v(s), v(t)] and [v(s′), v(t′)] cross
and ss′, st′, ts′, tt′ 6∈ E(G). Consider the angles of the spherical 4-gon with
corners v(s), v(s′), v(t), v(t′). Since the sum of the angles of a spherical
4-gon is larger than 2π, at least one angle is larger than π/2. We may
assume without loss of generality that the points are in clockwise order
v(s), v(s′), v(t), v(t′) and that the angle ∠v(s′)v(s)v(t′) is more than π/2.

v(t)

v(t′)v(s)

v(s′)

Then, by version (2) of the spherical cosine rule, we must have

v(s′)T v(t′) <
(
v(s)T v(s′)

) (
v(s)T v(t′)

)
.

Since l(s) ≥ 1 by Claim 4 and ss′, st′ 6∈ E(G), this gives

v(s′)T v(t′) <
(

1
l(s)l(s′)

)(
1

l(s)l(t′)

)
≤ 1
l(s′)l(t′)

,

which contradicts s′t′ ∈ E(G). �

Claim 6 Suppose that s1, s2, s3 form a clique in G, and v(s) lies inside the
(smaller of the two areas defined by the) spherical triangle determined by
v(s1), v(s2), v(s3). Then either ss1 ∈ E(G) or ss2 ∈ E(G) or ss3 ∈ E(G).

Proof of Claim 6: At least one of the angles ∠v(s1)v(s)v(s2), ∠v(s2)v(s)v(s3),
∠v(s1)v(s)v(s3) is at least 2π/3. (They sum to 2π.)

v(s2)

v(s)
v(s3)

v(s1)
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Without loss of generality, we may assume it is ∠v(s1)v(s)v(s2). The spher-
ical cosine rule (2) gives that

v(s1)T v(s2) <
(
v(s)T v(s1)

) (
v(s)T v(s2)

)
. (3)

If both ss1, ss2 6∈ E(G), then v(s)T v(s1) ≤ 1/(l(s)l(s1)) and v(s)T v(s2) ≤
1/(l(s)l(s2)). But then, as l(s) ≥ 1, we get from (3) that v(s1)T v(s2) <
1/(l(s1)l(s2)). This contradicts that s1s2 ∈ E(G). �

From now on, let us write vi = v(ti), li = l(ti) and vij = v(tij), lij =
l(tij). By Claim 5, the arcs [vij , vji] and [vkl, vlk] may not cross (if {i, j} 6=
{k, l}). However, the arc [vij , vji] could cross an arc of the form [vi, vik] or
[vj , vjk].

Let C denote the cycle t1, t12, t21, t2, t23, t32, t3, t31, t13, t1 in G. Let
P denote the corresponding spherical polygon. Because each spherical arc
corresponding to an edge has length at most ρ, we have P ⊆ cap(v1, 5ρ).
Also note that S2 \ P consists of at least two path-connected components
(by the Jordan curve theorem). As ρ is very small, exactly one of these
components has area bigger than 3.9π. We shall refer to this component as
the “outside” of P , and the union of the other components, the “inside”.

Claim 7 We may assume without loss of generality that v4 lies inside the
polygon P .

v13

v12 v1

v21

v23
v2v4

v31

v3

v32

Proof of Claim 7: For i ∈ {1, 2, 3, 4}, let Ti ⊆ S2 denote the union
of arcs ∪i 6=j [vi, vij ]. Observe that, by Claim 5, the Ti’s are disjoint. Let
Iij ⊆ [vij , vji] denote the minimal subarc of [vij , vji] that connects Ti and
Tj . Observe that in this way the Iij are disjoint, Iij hits each of Ti, Tj in
exactly one point, and Iij does not intersect Tk for k 6= i, j.

I23

I12

I14
I24

I13

T1
T2

T4

T3
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A standard argument now shows that, applying a suitable relabelling if
necessary, we can assume that T4 lies inside the smaller of the two regions
of S2 \ (T1 ∪ I12 ∪ T2 ∪ I23 ∪ T3 ∪ I13). But in that case v4 ∈ T4 lies inside P
as desired. �

Claim 8 v4 lies inside the (smaller of the two areas defined by the) spherical
triangle determined by v(f4) and two consecutive points on P .

Proof of Claim 8: Notice that, no matter where v(f4) lies exactly, the
great circle through v4 and v(f4) hits P twice, and we can speak of the
segment of P that lies behind v4 viewed from v(f4).

v(f4)

v(t4)

v(s2)

v(s1) v(s1)

v(s2)

v(t4)

v(f4)

If the vertices of this segment are v(s1), v(s2), then the spherical triangle
determined by v(f4), v(s1), v(s2) clearly contains v(t4). �

Since f4, s1, s2 form a clique in G, Claim 6 together with Claim 8 implies
that t4 must be adjacent to at least one of them. This is a contradiction,
since t4 is neither adjacent to f4 nor to any vertex of C. This concludes the
proof of Theorem 2 �

We remark that Claims 3, 4, 5 and 6 could be stated more generally.
In particular, Claim 3 holds for every graph H such that the graph formed
by the disjoint union of k copies of H has a 3-dot product representation
for arbitrarily large k. Claim 4 holds for any 3-dot product representation
(if one exists) of the graph H obtained from G by appending four leaves to
every vertex of G. Claims 5 and 6 hold for every graph G and 3-dot product
representation u of G such that ‖u(v)‖ ≥ 1 for every v ∈ V (G).

4 All planar graphs are 4-dot product graphs

The Colin de Verdière parameter µ(G) of a graph G is the maximum co-rank
over all matrices M that satisfy

(i) Mij < 0 if ij ∈ E(G);

(ii) Mij = 0 if ij 6∈ E(G) and i 6= j;
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(iii) M has exactly one negative eigenvalue; and

(iv) if X is a symmetric n× n matrix with Xij = 0 for all ij ∈ E(G) and
Xii = 0 for all i and MX = 0, then X = 0.

This parameter was introduced by Y. Colin de Verdiére in [2, 3], where it is
shown that planar graphs are exactly the graphs G with µ(G) ≤ 3.

Kotlov, Lovász and Vempala [5] introduced the following related pa-
rameter. Let ν(G) denote the smallest d such that there exist vectors
u1, . . . , un ∈ Rd that satisfy

(i) uT
i uj = 1 if ij ∈ E(G);

(ii) uT
i uj < 1 if ij 6∈ E(G) and i 6= j; and

(iii) if X is a symmetric n× n matrix such that Xij = 0 for all ij 6∈ E(G)
and Xii = 0 for all i and

∑
j Xijuj = 0 for all i, then X = 0.

Clearly, every graph G is a ν(G)-dot product graph. However, because (i)
asks for equality and because of the extra demand (iii), G might also be a
k-dot product graph for some k < ν(G). The relation between ν(G) and
µ(G) is given by the following result.

Theorem 9 ([5]) If G 6= K2, then ν(G) = n− 1− µ(G).

That K2 is a 4-dot product graph is obvious. That every other planar graph
is a 4-dot product graph is a direct consequence of Theorem 9 and the
following result.

Theorem 10 ([5]) If G is the complement of a planar graph, then µ(G) ≥
n− 5.

References
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