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Abstract. Using elementary techniques, a question named after the famous Russian mathe-
matician I. M. Gelfand is answered. This concerns the leading (i.e., most significant) digit in
the decimal expansion of integers 2n, 3n, . . . , 9n . The history of this question, some of which
is very recent, is reviewed.

1. INTRODUCTION AND RESULTS. It is well known that any positive integer n
has a decimal expansion

n = am10m + · · · + a110 + a0,

for some integer m ≥ 0 and integers a j ∈ {0, 1, 2, . . . , 8, 9} with am �= 0. Moreover,
this expansion is unique. In what follows, the integer am appearing at the beginning of
the decimal expansion of n is denoted by

〈〈n〉〉 := am,

and it is called the leading digit of n. So by definition,

〈〈n〉〉 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} .

The leading digit of positive numbers was already studied in 1881 by S. Newcomb
[9]; in fact he considered real numbers appearing in logarithm tables and he noted that
numbers with leading digit 1 appeared much more frequently in such tables than, e.g.,
numbers with leading digit 9. This eventually led to the famous “Benford’s law” for
the distribution of first digits, predicted to hold in many real life sets of numbers. This
law is named after the physicist F. Benford, who published his paper [3] stating it in
1938.

According to p. 37 of a book [2] by A. Avez published in 1966, the famous Russian
mathematician Israel M. Gelfand (1913–2009) posed the following question concern-
ing leading digits.

Question 1. Does n > 1 exist such that 〈〈2n〉〉 = 9?

The question was also included (Example 3.2 on p. 10) in the volume [1] by V.
I. Arnold and A. Avez which was published two years later, however, with ‘9’ replaced
by ‘7.’ On pp. 135–136 (Application A12.5) of [1], a detailed and complete answer
is provided. In fact, this answer shows that the distribution of the first digits of the
numbers 2n for positive n satisfies “Benford’s law.” It may be noted that in [1] no
remark appears relating the question to Gelfand.

The web pages of Wolfram MathWorld recall the question attributed to Gelfand, and
add three more questions to it [13].
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Question 2. Does n > 1 exist such that

(〈〈2n〉〉, 〈〈3n〉〉, . . . , 〈〈8n〉〉, 〈〈9n〉〉) = (2, 3, 4, 5, 6, 7, 8, 9)?

More particularly, compute

lim
N→∞

# {n ∈ Z>0 ; n < N and 〈〈�n〉〉 = � for 2 ≤ � ≤ 9}
N

if this limit exists.

Question 3. Do any n > 0 and a ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} exist such that

(〈〈2n〉〉, 〈〈3n〉〉, . . . , 〈〈8n〉〉, 〈〈9n〉〉) = (a, a, a, a, a, a, a, a)?

Question 4. Does n ≥ 1 exist such that

〈〈2n〉〉107 + 〈〈3n〉〉106 + 〈〈4n〉〉105 + · · · + 〈〈8n〉〉10 + 〈〈9n〉〉

is a prime number?

The Wolfram MathWorld page discussing these questions is titled ‘Gelfand’s Ques-
tion,’ although it clearly states that only the simple Question 1 was attributed to
Gelfand. No reference is given to the book by Arnold and Avez which, as indicated
above, contains a detailed and complete answer to Question 1. A reference discussing
all four questions stated above is Jonathan L. King’s prize winning paper [8], which
was honored in 1995 with the Lester R. Ford Award of the Mathematical Association
of America. Page 610 of King’s paper states the four questions, and pp. 619–624
contain a detailed answer to Question 1 and even several arguments which lead in
the direction of an answer to Questions 2 and 3. However, no answer is given. Since
the MathWorld page uses [8] as its main reference, it seems plausible that this is how
they learned about the questions. It is somewhat remarkable that the MathWorld pages
do not mention the fact that King provides a complete answer to Question 1. In the
same vein, although King cites the textbook [2], he does not mention [1] and therefore
misses the fact that this book (also) answers Question 1.

Concerning Questions 2 and 3, the MathWorld page mentions that this was tested
for n ≤ 105 and no examples were found. In a post (19 June 2013) on his blog The
Endeavour [4], the American mathematician John D. Cook informs the readers that
he has extended the search to n < 1010. This did not result in any examples. Cook’s
post [5] written on the same day discusses the problem of actually calculating 〈〈an〉〉
for small a and exponent n in the search range mentioned above.

Question 4 led to a list in the Online Encyclopedia of Integer Sequences [12]. This
contains the 53 smallest positive integers n such that 〈〈2n〉〉107 + 〈〈3n〉〉106 + 〈〈4n〉〉105 +
· · · + 〈〈8n〉〉10 + 〈〈9n〉〉 is prime.

It turns out that not only do Questions 1 and 4 have a simple answer that can be
explained using classical and quite well-known arguments; the same holds for Ques-
tions 2 and 3. Indeed, we have the following result.

Theorem 1.

1. (see Appendix 12 in [1] and [8, p. 621]) Suppose k, � are integers satisfying
2 ≤ k, � ≤ 9. Then
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lim
N→∞

# {n ∈ Z>0 ; n < N and 〈〈�n〉〉 = k}
N

= log10

(
k + 1

k

)
.

This means precisely that the integers {�n ; n ∈ Z>0} satisfy Benford’s law.
2. The only integer n > 0 such that 〈〈�n〉〉 = � holds for every � ∈ {2, . . . , 9} is

n = 1.
3. For a fixed integer n > 0, the 8 numbers in the sequence

〈〈2n〉〉, 〈〈3n〉〉, . . . , 〈〈8n〉〉, 〈〈9n〉〉
are not all equal.

4. The set {
9∑

�=2

〈〈�n〉〉109−� : n > 0

}

contains precisely 17 596 integers, of which 1127 are prime numbers.

The essential parts of this result were posted on his blog MATHBLAG [11] by
the second author of our paper on the same day that David Cook discussed Gelfand’s
question (19 June 2013). Independent of this, the theorem was proven in the bache-
lor’s thesis [6] of the first author of our paper. However, due to a small mistake in an
algorithm, the numbers appearing in Part (4) of our result were higher in this thesis. A
comparison with the data provided on [11] revealed this mistake and moreover showed
that also the numbers originally presented on the website were too high. The remainder
of this paper explains the proof of Theorem 1.

2. TOOLS. The operation m �→ 〈〈m〉〉, which assigns to a positive integer m its lead-
ing digit, can easily be extended to arbitrary positive real numbers. To make this pre-
cise, put

M := {x ∈ R : 1 ≤ x < 10} .

Any x ∈ M has its integer part �x ∈ {1, 2, . . . , 8, 9}, which is by definition the largest
integer ≤ x .

By multiplying all numbers in M by 10, one obtains 10M which consists of all
y such that 10 ≤ y < 100; similarly dividing by 1000 yields 10−3 M , the numbers
between 1/1000 and 1/100 with the left boundary included. If one uses all powers of
10 in this way, a subdivision

R>0 = ∪
k∈Z

10k M

of the positive real numbers as a union of pairwise disjoint half open intervals 10k M
is obtained. This means that every positive real number x can be written in a unique
way as

x = 10km

for some integer k and some m ∈ M . Now define

〈〈x〉〉 := �m.
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Note that for positive integers x = n this definition coincides with the one given
in Section 1.

Next, define for x, y ∈ M the product xy ∈ M as

xy :=
{

x · y if x · y < 10;
x · y/10 if x · y ≥ 10.

Observe that this product provides M with the structure of a commutative group. The
inverse of x ∈ M is 10/x in case x �= 1; the unit element 1 ∈ M is obviously its own
inverse.

Quite analogously, a group A can be defined as follows. As a set, take

A := {x ∈ R : 0 ≤ x < 1}

and as a group structure on A define for a, b ∈ A their sum

a + b ∈ A

to be the usual sum of the real numbers a, b when this sum is < 1, and one less than
this usual sum otherwise.

The groups M and A are isomorphic: m �→ log10(m) is an isomorphism with inverse
a �→ 10a . In fact, both groups A and M are well known. A is the group R/Z, the
additive group of real numbers modulo the subgroup of all integers, and M is the
group R×

>0/10Z, the multiplicative group of positive real numbers modulo the subgroup
{10k : k ∈ Z}. This last observation provides one with a group homomorphism

R×
>0 −→ R×

>0/10Z ∼= M

which will be denoted x �→ x̃ . Writing x = 10km as before, it maps x ∈ R>0 to x̃ =
m ∈ M . By definition,

〈〈x〉〉 = �x̃

and we obtain a diagram

R>0
x �→x̃ ��

〈〈·〉〉

���
��
��
��
��
��
�

M

�·

����
��
��
��
��
��

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The group A is the well known group of points on the circle C . Indeed, the map
A → C , given by a �→ e2π ia defines an isomorphism from A to the subgroup C =
{z ∈ C : |z| = 1} of the multiplicative group consisting of all nonzero complex num-
bers. The main mathematical tool that we use in this paper is the Kronecker–Weyl
equidistribution theorem. Kronecker proved in 1884 the following result.
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Theorem 2. Let (α1, . . . , αm) ∈ A × · · · × A be such that, as real numbers, λ0 +
λ1α1 + λ2α2 + · · · + λmαm �= 0 for all nonzero (λ0, . . . , λm) ∈ Qm+1. Then {n(α1, . . . ,

αm) : n ∈ Z>0} is dense in A × · · · × A.

In fact, the name “equidistribution theorem” refers to a much stronger result which
was not yet claimed by Kronecker in 1884, but was proved by several people including
Hermann Weyl around 1909–1910. A nice two page exposition of the result and its
proof is given in [10]. We only mention a special and simple consequence (compare
[7, § 23.10]).

Theorem 3. Let α ∈ A be an element of infinite order (i.e., α �∈ Q) and let I ⊆ A be
an interval of length |I |. Then

lim
N→∞

#{n ∈ Z>0 : n ≤ N and nα ∈ I }
N

= |I |.

Obviously, using the isomorphism A ∼= M one obtains analogous results in the mul-
tiplicative setup. This will be used in proving our answers to “Gelfand’s questions.”

3. PROOFS. We will now prove the assertions presented in Theorem 1. For com-
pleteness we include a proof of the first part, although this may also be found in [1]
and in [8].

Part 1. Let k, � be integers such that 2 ≤ k, � ≤ 9. For any positive integer n we have

〈〈�n〉〉 = k ⇔ k ≤ �̃n < k + 1
⇔ log10(k) ≤ n log10(�) < log10(k + 1),

where α := log10(�) is regarded as an element of the group A and nα denotes repeated
addition in A.

Note that α �∈ Q, since otherwise aα = b for some positive integers a, b, and there-
fore �a = 10b, which is absurd. So we can apply Theorem 3 to α and the interval

I := {x : log10(k) ≤ x < log10(k + 1)}

which has length |I | = log10

(
k+1

k

)
. This completes the proof of Part 1.

Part 2. To prove the second assertion, observe that in the group M the inverse of 2 is
5. As a consequence, the inverse of 2̃n is 5̃n for any integer n.

Now assume n > 0 and 〈〈2n〉〉 = 2 and 〈〈5n〉〉 = 5. By definition, this means

2̃n = 2 + ε2 and 5̃n = 5 + ε5

for certain real numbers ε2, ε5 which satisfy 0 ≤ ε2, ε5 < 1. Multiplying in the group
M shows

1 = (2 + ε2)(5 + ε5)

10
,

so 2ε5 + 5ε2 + ε2ε5 = 0. Since ε2, ε5 are nonnegative, the latter equality implies

ε2 = ε5 = 0,

238 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 122



so 2̃n = 2. This means 2n = 2 · 10k for some integer k, which is clearly only possible
for k = 0. In that case 2n = 2, so n = 1.

Since 〈〈�1〉〉 = � for every � ∈ {2, 3, . . . , 9}, this finishes the proof of Part 2.

Part 3. Take an integer n > 0 and assume 〈〈�n〉〉 = a for all � ∈ {2, 3, . . . , 9}. Write

�̃n = a + ε�

where, by assumption, 0 ≤ ε� < 1. In fact ε� �= 0 for every �. Indeed, an equality
�̃n = a would imply that �n = a · 10k for some integer k. This is only possible with
k = 0, implying that �n = a ≤ 9. But then n ≤ 3, and in that case 〈〈2n〉〉 �= 〈〈3n〉〉.

So we conclude

0 < ε� < 1

for every �. Now multiply 2̃n and 5̃n in the group M . The result equals 1 ∈ M , and as
a consequence one has as real numbers

(a + ε2) · (a + ε5) = 10.

The fact that every ε� is between 0 and 1 therefore shows

a2 < 10 < (a + 1)2,

hence a = 3 (this argument is also present in [8]).
Since (2n)2 = 4n , it follows that in M the equality

(3 + ε2)
2 = 3 + ε4

holds. This is clearly absurd because the real number (3 + ε2)
2 is between 9 and 16

while 3 + ε4 times any power of 10 is not.
So the assumption that 〈〈2n〉〉 = 〈〈4n〉〉 = 〈〈5n〉〉 and n > 0 leads to a contradiction.

This proves Part 3.

Part 4. The remaining assertion deals with the sequences

(〈〈2n〉〉, 〈〈3n〉〉, . . . , 〈〈9n〉〉)

as n runs over the positive integers. These sequences are regarded as the decimal no-
tation of numbers. We ask for the number of pairwise different sequences, and for the
number of pairwise different primes represented by them.

The number of different sequences is bounded by 98 = 43, 046, 721. We saw in the
proof of Parts 2 and 3 that the actual number of sequences is smaller. As these proofs
show, this is caused by multiplicative relations among the numbers {2, 3, . . . , 8, 9} in
the group M .

Lemma 1. The subgroup of M generated by 2, 3, 4, . . . , 9 is free of rank 3, with 2, 3,
and 7 as generators.

Proof. Indeed, 4 = 22, 5 = 2−1, 6 = 2 · 3, 8 = 23, and 9 = 32 in M shows that the
subgroup is generated by 2, 3, and 7.
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A relation between these generators would mean that integers a, b, c exist, such
that 2a3b7c = 1 in M . As rational numbers this is expressed as 2a3b7c = 10d for some
integer d. Considering the contribution of the prime numbers 5, 2, 3, 7 to both sides of
this equality (here unique factorization into prime numbers is used!) shows d = a =
b = c = 0. This proves the lemma.

Translating the lemma into a statement about the additive group A ∼= M shows that
log10(2), log10(3), and log10(7) generate a free subgroup of A of rank 3. In particular,
the three real numbers given here together with the number 1 are linearly independent
over the rational numbers. Hence by Theorem 2 one concludes the following.

Corollary 1. For every a, b, c ∈ {1, 2, . . . , 8, 9} there is an integer n > 0 such that

〈〈2n〉〉 = a and 〈〈3n〉〉 = b and 〈〈7n〉〉 = c.

Proof. By Theorem 2 and the remarks above, positive integers n exist (in fact, in-
finitely many) such that

n
(
log10(2), log10(3), log10(7)

) ∈ Ia × Ib × Ic ⊆ A × A × A.

Here Ia = {x ∈ A : log10(a) ≤ x < log10(a + 1)} and Ib, Ic are defined analogously.
If one translates this into a statement about the group M , it says

〈〈2n〉〉 = a and 〈〈3n〉〉 = b and 〈〈7n〉〉 = c

which implies the result.

One finds a similar argument in King’s paper [8]. In fact, from it one may conclude
that the fraction of positive integers n such that 〈〈2n〉〉 = a and 〈〈3n〉〉 = b and 〈〈7n〉〉 = c
equals

log10

(
a + 1

a

)
· log10

(
b + 1

b

)
· log10

(
c + 1

c

)
.

Adopting the notation introduced in the proof of this corollary, one has

〈〈�n〉〉 = a� ⇔ n log10(�) ∈ Ia�
.

Now n log10(4) = 2n log(2), and the condition 2n log10(2) ∈ Ia4 is equivalent to

n log10(2) ∈ 1

2
Ia4 ∪

(
1

2
Ia4 + 1

2

)
.

Similarly the condition on n log10(8) translates into

n log10(2) ∈ 1

3
Ia8 ∪

(
1

3
Ia8 + 1

3

)
∪

(
1

3
Ia8 + 2

3

)
.
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In this way, all conditions can be rewritten as equivalent ones involving only
n log10(2), n log10(3), and n log10(7). The one for � = 5 becomes

n log10(2) ∈ (
1 − Ia5

)
while � = 9 yields

n log10(3) ∈ 1

2
Ia9 ∪

(
1

2
Ia9 + 1

2

)
.

The final one involves � = 6, which yields

n log10(2) + n log10(3) ∈ Ia6 .

So first ignoring the condition for � = 6, one obtains that n log10(2) needs to sat-
isfy four conditions which together demand that this element of the group A is in an
intersection J2 of the sets described above:

J2 := (
1
3 Ia8 ∪ (

1
3 Ia8 + 1

3

) ∪ (
1
3 Ia8 + 2

3

))
∩

Ia2 ∩ (
1
2 Ia4 ∪ (

1
2 Ia4 + 1

2

)) ∩ (
1 − Ia5

)
.

Similarly one needs n log10(3) ∈ J3, with

J3 := Ia3 ∩
(

1

2
Ia9 ∪

(
1

2
Ia9 + 1

2

))

and of course n log10(7) ∈ Ia7.
It is not difficult to test for fixed a2, . . . , a9 whether both sets J2 and J3 are nonempty

and, if this is the case, whether (J2 + J3) ∩ Ia6 �= ∅. If these conditions hold and the
nonempty sets involved in fact contain a nonempty open interval, then an application
of Theorem 2 similar to how it is used in Corollary 1 shows that in fact infinitely many
n > 0 exist such that 〈〈�n〉〉 = a� for all � ∈ {2, 3, . . . , 9}.

Running this process on a computer revealed 9 · 1955 = 17 595 sequences for
which the sets described above are nonempty, so all these sequences occur for in-
finitely many n > 0. The remaining one is the sequence for n = 1, bringing the total
number of sequences to 17 596. A simple inspection shows that exactly 1127 of these
are the decimal notations of prime numbers.

As an example of the computation, consider the sequence 48224987. Here the pairs
(a, b) = (

n log10(2) mod Z, n log10(3) mod Z
) ∈ A × A such that the corresponding

J2, J3 and (J2 + J3) ∩ I4 are nonempty are given by the three conditions 103a < 90,
102b < 80, and 10a+b > 40. The picture shows the solutions (a, b). By Weyl’s equidis-
tribution theorem, the area of the solution set equals the fraction of positive integers
n giving rise to a sequence 48224 ∗ 87. Hence this fraction is quite small (roughly
4 × 10−7). If also the condition 〈〈7n〉〉 = 9 is taken into account, then one obtains a ra-
tio equal to the computed area times log1 0

(
10
9

)
. This shows that the fraction of positive

n’s leading to 48224987 is slightly less than 2 × 10−8.
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a

b

Figure 1. (a, b) such that〈〈10a〉〉〈〈10b〉〉〈〈102a〉〉〈〈101−a〉〉〈〈10a+b〉〉〈〈103a〉〉〈〈102b〉〉 = 4822487

We are indebted to one of the referees of an earlier draft of this paper for the follow-
ing argument, which in fact provides the total number of sequences without the help
of a computer. All occurring conditions on a and b look like one of the following:

k ≤ 10a < k + 1,

k ≤ 102a < k + 1,

10k ≤ 102a < 10k + 10,

k ≤ 103a < k + 1,

10k ≤ 103a < 10k + 10,

100k ≤ 103a < 100k + 100,

k ≤ 101−a < k + 1,

k ≤ 10b < k + 1,

k ≤ 102b < k + 1,

10k ≤ 102b < 10k + 10,

k ≤ 10a+b < k + 1,

10k ≤ 10a+b < 10k + 10

with a, b between 0 and 1 and 1 ≤ k ≤ 9 an integer. The conditions involving only a
or only b subdivide the unit square into 55 × 24 = 1320 rectangular pieces. The 24
horizontal strips, which involve the conditions on b only, reflect the fact that precisely
24 pairs 〈〈3n〉〉〈〈9n〉〉 exist. Similarly, the 55 vertical strips correspond to the occurring
sequences 〈〈2n〉〉〈〈4n〉〉〈〈5n〉〉〈〈8n〉〉 with n ≥ 2. The conditions on a + b split some of the
rectangles into smaller parts. Consider the lines where a + b is constant which bound
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Table 1. The Maple code which enumerates the sequences that occur infinitely often.

Digits := 20; verz := {};

for m from 10 by 50 to 1010

do for n to m-1

do x := n/m;

if denom(m) > 3

then tx := 10^x; v2 := floor(tx);

v4 := floor(tx^2);

if v4 > 9 then v4 := floor(tx^2/10) end if;

v5 := floor(10/tx); v8 := floor(tx^3);

if v8 > 9 then v8 := floor(tx^3/10) end if;

if v8 > 9 then v8 := floor(tx^3/100) end if;

v := 10*v8+10^4*v5+10^5*v4+10^7*v2+100;

for k to m-1

do y := k/m;

if denom(y)>2

then ty := 10^y; v3 := floor(ty);

v6 := floor(tx*ty);

if v6 > 9 then v6 := floor(tx*ty/10) end if;

v9 := floor(ty*ty);

if v9 > 9 then v9 := floor(ty*ty/10) end if;

w := v+v9+1000*v6+10^6*v3;

verz := ‘union’(verz, {w})

end if

end do

end if

end do; print(m, nops(verz))

end do:

our conditions one by one. Each time such a line enters a new region, it will split the
region into two parts. This happens precisely when the diagonal line crosses a vertical
one, and when it crosses a horizontal one coming from the conditions. Every vertical
and every horizontal strip is intersected by 9 of the diagonal lines. Since we know
the total number of vertical and horizontal lines (56 + 25) and also the number of
occurrences where a diagonal line crosses precisely at an intersection of a horizontal
and a vertical one (76 of them), the square is subdivided into 1320 + 9(55 + 24) −
76 = 1955 regions. A picture illustrating these regions is presented below. Note that
some are too small to be visible in the picture.

Note that the lines bounding our regions containing a point with both coordinates ra-
tional, satisfy at least one of the conditions x ∈ {

0, 1
3 ,

1
2 ,

2
3 , 1

}
or y ∈ {

0, 1
2 , 1

}
. Hence

the Maple program in Table 1, which runs over rational values a, b, only uses points in
the interior of the regions. With this code, indeed 1955 different sequences are found.

It is easy to add to each sequence the 9 possibilities for 〈〈7n〉〉 and finally to add
the sequence 123456789. It turns out that precisely 1127 of the resulting sequences
represent a prime number.

Combining our results and ideas presented in [8], it is possible to settle the evident
density problems related to Gelfand’s question. In particular, for any given sequence
s = (a2, . . . , a9) the fraction of positive integers n such that (〈〈2n〉〉, . . . , 〈〈9n〉〉) = s
equals the product of the area of the corresponding (a, b)-region as described above,
and the number log10

( a7+1
a7

)
. By adding 1127 such densities, one can even determine

the fraction of integers n > 0 leading to prime numbers.
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Figure 2. The 1955 regions
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