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1. Basic definitions

We recall some basic definitions and properties of fields. A field K
has a smallest subfield, called the prime field of K. This prime field is
either Q, in which case the characteristic of K is 0, or Fp = Z/pZ for
some prime number p, in which case the characteristic of K is p.

Let K ⊂ L be an extension of fields. Then L can be seen as a vector
space over K. The dimension of this vector space is denoted by [L : K].
In general [L : K] is infinite. If [L : K] is finite then L is called a finite
extension of K of degree [L : K].

Let A be a subset of L, then K(A) denotes the smallest subfield
of L containing both A and K. Similarly, K[A] denotes the smallest
subring of L containing A and K. For A = {a1, . . . , as} one writes
K(A) = K(a1, . . . , as) and K[A] = K[a1, . . . , as]. An element a ∈ L
is called algebraic over K if there is a non-zero polynomial f ∈ K[x]
with f(a) = 0. For algebraic a there is a polynomial F 6= 0 of minimal
degree such that F (a) = 0. If F is normalized to be monic, then F is
unique and is called the minimal polynomial of a over K. Let F have
degree n, then K(a) = K[a] ∼= K[x]/(F ) is a vector space over K with
dimension n and with basis 1, a, . . . , an−1.

An element a ∈ L which is not algebraic over K is called transcen-
dental over K. The obvious ring homomorphism K[x] → K[a] (i.e.,
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i) is an isomorphism. Thus K[a] is not a field. The
field of fractions K(a) of K[a] is in this case isomorphic to K(x), i.e.,
to the field of rational functions over K.

The field extension K ⊂ L is called finitely generated if there are
elements a1, . . . , as ∈ L such that L = K(a1, . . . , as). The elements
a1, . . . , as are called algebraically dependent over K if there is a non-
zero polynomial f ∈ K[x1, . . . , xs] with f(a1, . . . , as) = 0. If such a
polynomial f does not exists, then a1, . . . , as are called algebraically
independent over K. In the latter case, the obvious homomorphism
K[x1, . . . , xs] → K[a1, . . . , as] is an isomorphism.Then K ⊂ L is
called a purely transcendental extension of K of transcendence degree
s and L is isomorphic to the field of fractions of the polynomial ring
K[x1, . . . , xs]. This field of fractions is denoted by K(x1, . . . , xs). It
is an exercise (see Exercise 3 below) to show that a finitely generated
extension L of K has an intermediate field M (i.e., K ⊂M ⊂ L) such
that K ⊂M is purely transcendental and M ⊂ L is a finite extension.
The transcendence degree of L over K is defined as the transcendence
degree of M over K. It is not at all clear that this definition is a
valid one. One has to show that it does not depend on the choice of
the intermediate purely transcendental extension. This is, for instance,
Theorem 25 in Chapter II of the book Commutative Algebra (Vol. 1)
by O. Zariski and P. Samuel. A different proof which uses theory of
“derivations” and which is valid only in characteristic zero, is to com-
pute the dimension of the M -vector space consisting of all K-linear
maps D : M →M which satisfy D(m1m2) = m1D(m2) +m2D(m1).

1.1. Exercises.

(1) Let K ⊂ L be fields and a ∈ L. Show that K[a] is a field if
and only if a is algebraic over K.

(2) Let K ⊂ L be fields and S ⊂ L a non-empty finite subset.
Show that K[S] is a field if and only if every element of S is
algebraic over K.
Find a counterexample with S = L to show that the condition
that S is finite cannot be missed.

(3) Let K ⊂ L be a finitely generated field extension. Prove the
existence of an intermediate field M such that K ⊂M is purely
transcendental (or K = M) and [L : M ] <∞.

2. Solving polynomial equations

Let f ∈ K[x] be a non-constant polynomial. In general, f does not
split as a product of linear factors in K[x] because K does not always
contain all the solutions of f(a) = 0. We would like to “find” or to
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“construct” a larger field which contains all the roots of f . This is
formalized in the next definition.

Definition 2.1. A splitting field L of f over K is a field extension
such that:
(a) f splits in L[x] as a product of linear factors.
(b) Let a1, . . . , as denote the zeros of f in L, then L = K(a1, . . . , as).

Proposition 2.2.
(1) A splitting field exists.
(2) Let L1, L2 be two splitting fields for f over K. Then there exists a
K-linear isomorphism of the fields L1, L2.

Proof. (1) One uses induction with respect to the degree of f . Take a
(monic) irreducible factor g (in K[x]) of f . Then K1 := K[y]/(g(y))
contains a zero, say α of g. Thus f factors in K1[x] as (x − α)h. By
induction, a splitting field L for h over K1 exists. It is easily seen
that L is also a splitting field for f over K. We note, in passing, that
[L : K] <∞.
(2) We will make a proof of a somewhat more general statement:
Two fields K1 and K2 and an isomorphism φ0 : K1 → K2 are given.
Extend φ0 to a ring isomorphism K1[x] → K2[x] by φ0(

∑
aix

i) =∑
φ0(ai)x

i. Suppose f1 ∈ K1[x] and f2 ∈ K2[x] satisfy φ0(f1) = f2.
Let L1, L2 denote two splitting fields for f1 and f2 over K1 and K2,
respectively. Then φ0 extends to an isomorphism between the field L1

and L2.
We will construct the desired isomorphism φ : L1 → L2 step by step.

The lowest level, φ0 : K1 → K2 is given. Consider an irreducible factor
g of f1 and a zero α ∈ L1 of g. Then φ0(g) is an irreducible factor
of φ0(f1) = f2. Hence φ0(g) splits completely over L2. Choose a β
in L2 with φ0(g)(β) = 0. Define φ1 : K1(α) → K2(β) by the formula∑n−1

i=0 aiα
i 7→

∑n−1
i=0 φ0(ai)β

i, where all ai ∈ K1 and where n is the
degree of g. It is easily verified that φ1 is indeed an isomorphism of
fields. Now replace K1, K2, f1, f2 by K1(α), K2(β), f1/(X−α), f2/(X−
β). The fields L1, L2 are splitting fields over K1(α) and K2(β) for
the polynomials f1/(X − α) and f2/(X − β). Induction finishes the
proof. �

A polynomial f ∈ K[x] \ K is called separable if the roots of f in
any field extension L of K are distinct. It follows from Proposition 2.2
that it suffices to verify this for a splitting field L of f over K.

Corollary 2.3. Let L ⊃ K be the splitting field of a separable polyno-
mial f ∈ K[x] \ K. Then the number of K-linear automorphisms of
the field L is equal to [L : K].

Proof. In the situation given in the proof of part (2) of Proposition 2.2,
we compute the dimensions and count the number of choices for ex-
tensions. We work again in the more general situation. Suppose
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φ0 : K1 → K2 is given. The polynomials f1 and f2 are by assump-
tion separable. Thus g and φ0(g) are separable. It is obvious that
φ1 : K1(α) → L2 should map α to a root β of φ0(g). The num-
ber of possibilities for β is the degree of φ0(g) (which equals the
degree of g). Thus for φ1 there are deg(g) possibilities. One has
[L1 : K1] = [L1 : K1(α)][K1(α) : K1]. By induction the number of
extensions L1 → L2 of a given φ1 is equal to [L1 : K1(α)]. This com-
pletes the proof. �

2.1. Exercises.

(1) Prove that f ∈ K[x] \ K is separable if and only if f and its
derivative f ′ = d

dx
f are relatively prime.

(2) Let L be a splitting field of f over K. Let n be the degree of f .
Prove that [L : K] ≤ n!. Try to make examples with K = Q
and f of degree 3 with [L : Q] = 6.

(3) Let L be the splitting field over Q of the polynomial x3 − 3.
Produce an explicit splitting field L ⊂ C and find the (Q-linear)
field automorphisms of L.

(4) The same question for the polynomial x8 − 1 over Q.

3. Galois extensions and examples

For our purposes a pleasant definition of a Galois extension K ⊂ L
is:

Definition 3.1. L ⊃ K is called a Galois extension of K if L is a
splitting field of a separable polynomial f over K.

Definition 3.2. The Galois group Gal(L/K) of the extension K ⊂ L
is the group of all K-linear automorphisms of L.

Observe that indeed Gal(L/K) is a group, with composition of au-
tomorphisms as group law and the identity automorphism as the unit
element .

Lemma 3.3. Let K ⊂ L be a Galois extension and suppose that a ∈ L
is invariant under the action of Gal(L/K). Then a ∈ K.

Proof. From Corollary 2.3 we know that [L : K] = #Gal(L/K). Let
f be a polynomial in K[x] such that L is its splitting field over K.
Observe that L is also the splitting field of f over the field K(a). The
assumption that a ∈ L is invariant implies Gal(L/K) = Gal(L/K(a)).
Thus [L : K] = [L : K(a)] and hence [K(a) : K] = 1, which means
that a ∈ K. �
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Corollary 3.4. Let K ⊂ L be a Galois extension and a ∈ L. The
minimal polynomial F of a over K is separable and all its roots are in
L.

Proof. Let the orbit Gal(L/K)a = {ga| for all g ∈ Gal(L/K)} be
{a1, . . . , as}. Consider the polynomial G := (x − a1) · · · (x − as) =
xs+bs−1x

s−1+ · · ·+b1x+b0 in L[x]. This polynomial is invariant under
the action of Gal(L/K) and hence Lemma 3.3 implies that G ∈ K[x].
Clearly F divides G and therefore it has the required properties. �

Proposition 3.5. Let K ⊂ L be a finite extension. The following are
equivalent:
(1) K ⊂ L is a Galois extension.
(2) For every element a ∈ L, the minimal polynomial F ∈ K[x] of a
has the property that all its roots lie in L and are simple.

Proof. (1)⇒(2) is the statement of Corollary 3.4.
(2)⇒(1). Take elements a1, . . . , as ∈ L such that L = K(a1, . . . , as).
Let Fi be the minimal polynomial of ai over K. We may suppose that
F1, . . . , Ft are the distinct elements in {F1, . . . , Fs}. Put F = F1 · · ·Ft.
Then each Fi is separable and has all its roots in L. Then also F is
separable and all its roots are in L. Moreover the set of the roots of F
contains {a1, . . . , as}. Thus L is the splitting field of F over K. �

In several textbooks on Galois theory, part (2) of the above proposition
is used as the definition of a Galois extension. To be more precise: a
finite extension L/K is called normal if for every a ∈ L the minimal
polynomial F of a over K splits in L[x] as a product of linear factors.
The extension is called separable if for every a ∈ L, the minimal
polynomial F of a over K is separable. The extension is called Galois
if it is both normal and separable.

Remark
Let f ∈ K[x] be a separable polynomial and let L ⊃ K be a splitting
field. The roots of f in L are say {a1, . . . , an}. Every σ ∈ Gal(L/k)
permutes this set. Thus we find a homomorphism Gal(L/K) → Sn.
This homomorphism is injective. Indeed, if σ(ai) = ai for all i, then σ
is the identity since L = K(a1, . . . , an).

Example 3.6. The Galois group of the splitting field of x4− 2 over Q
is in this way isomorphic with the subgroup

{(1), (2 4), (1 2 3 4), (1 2)(3 4), (1 3)(2 4), (1 3), (1 4 3 2), (1 4)(2 3)}

of S4. Here we have written the roots as ak = ik−1 4
√

2 with k = 1, 2, 3, 4.
A permutation sending k to ` corresponds to a field homomorphism
sending ak to a`.

We now give some more examples and elementary properties.
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Example 3.7. Q( 3
√

2)/Q is not normal.
This follows using Proposition 3.5. Indeed, the minimal polynomial of
3
√

2 over Q is x3− 2. One can consider Q( 3
√

2) as a subfield of R. The
other two zeros of x3 − 2 in C are ω 3

√
2 and ω2 3

√
2, where ω = e2πi/3.

They do not lie in R and hence also not in Q( 3
√

2).

Example 3.8. If [L : K] = 2 and the characteristic of K is 6= 2, then
L/K is Galois.
Choose α ∈ L \ K. Its minimal polynomial F has the form F =
x2 + ax + b. The polynomial F splits in L[x] as (x − α)(x − β) with
β + α = −a. If α would equal β, then one finds the contradiction
α = −a

2
∈ K. It follows that L is the splitting field of the separable

polynomial F over K.

Example 3.9. If the characteristic of K is 0, then every finite L/K
is separable.
Choose a ∈ L. Its minimal polynomial F ∈ K[x] is irreducible. The
derivative F ′ = dF

dx
of F is not 0 and thus the g.c.d. of F and F ′ is 1.

By Exercise 1 of Section 2, one has that F is separable.

Example 3.10. A field K of characteristic p > 0 is called perfect if
every element of K is a pth power. Every finite extension L/K of a
perfect field is separable.
Choose a ∈ L with minimal polynomial F ∈ K[x]. If F is not separable
then the g.c.d. of F and F ′ is not 1. Since F is irreducible this implies
that F ′ = 0. Thus F contains only pthe powers of x, i.e., F =

∑
anx

pn

with an ∈ K. Each an is written as bpn with bn ∈ K. Then F =
(
∑
bnx

n)p, which contradicts the fact that F is irreducible.

Example 3.11. Every finite field is perfect. The field Fp(t) is not
perfect.
The finite fields of characteristic p are the Fq with q a power of p. The
“Frobenius map” Fr : z 7→ zp on any field of characteristic p > 0 is
a homomorphism of the additive group. The kernel is 0 since zp = 0
implies z = 0. By counting, one sees that Fr : Fq → Fq is bijective.
And Fr : Fp(t)→ Fp(t) is not surjective since t is not in the image.

Example 3.12. Put K = Fp(t) and let F = xp − t. The splitting field
of F is not separable over K.
Indeed, the derivative of F is 0. We note that the splitting field in
question can be identified with Fp(x).

3.1. Exercises.

(1) Show that a finite extension of a finite field is Galois.

(2) Show that Fpn is the splitting field of the polynomial xp
n − x

over Fp. Prove that Fpn/Fp is Galois and that its Galois group
is {1, F r, . . . , F rn−1}, where Fr is the Frobenius map on Fpn
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defined by Fr(z) = zp.

(3) Show that Q( 4
√

3, i) is a Galois extension of Q(i) and compute
the corresponding Galois group.

(4) Determine the Galois group of x12 − 2 over Q.

(5) Take q = pn for some prime p, and let K ⊃ Fq and a ∈ K, with
the property that the polynomial Xq − X + a does not split
completely in K[X]. Let α be a zero of this polynomial in some
splitting field.
(a) Show that K(α) 6= K.
(b) Show that the extension K(α) ⊃ K is Galois.
(c) Show that every σ ∈ Gal(K(α)/K) satisfies σ(α) = α + t

for some t ∈ Fq.
(d) Show that σ 7→ σ(α) − α defines an injective homomor-

phism of groups: Gal(K(α)/K)→ (Fq,+, 0).
(e) In the special case that K is itself a finite field, observe

that the Galois group of a finite extension of finite fields is
cyclic, and deduce that Xq−X + a factors as a product of
q/p distinct irreducible polynomials of degree p in K[X].

(f) Take K = Fq(t) and Xq − X + t. Explain why this poly-
nomial is irreducible in K[X], and determine the Galois
group of its splitting field over K.

4. Cyclotomic fields

Let n ≥ 1 be an integer and write ζ = ζn = e2πi/n ∈ C. The subfield
Q(ζ) ⊂ C is the splitting field of xn − 1 over Q, since all the roots of
xn − 1 are ζk, k = 0, 1, . . . , n − 1. For n ≥ 3, one calls Q(ζ) the nth
cyclotomic field. The minimal polynomial Φn of ζ over Q is called the
nth cyclotomic polynomial. An explicit general formula for Φn is not
available. Still we will need some information on Φnin order to calcu-
late the Galois group of Q(ζ)/Q. Two tools from standard courses in
algebra that we will use are:
(1) Lemma of Gauss: Let f ∈ Z[x] be monic and let g, h ∈ Q[x] be
likewise. Then f = gh implies that g, h ∈ Z[x].
(2) Eisenstein’s criterion: Let f = anx

n + · · · + a0 ∈ Z[x] be such
that all its coeffcients, with the exception of an, are divisible by a prime
number p and p2 does not divide a0. Then f is irreducible in Z[x] and
in Q[x].
The proof of both statements uses “reduction modulo p, i.e., the ring
homomorphism Z[x] → Fp[x], given by f =

∑
anx

n 7→ f̄ :=
∑
ānx

n,
where for a ∈ Z one has written ā for its image in Fp = Z/pZ. Reduc-
tion modulo p will also be used in the proof of the next proposition, as
well as the identity f̄(xp) = f̄p for f̄ ∈ Fp[x].
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Proposition 4.1.
(1) Φn ∈ Z[x].
(2) For a prime number p one has

Φp =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1.

(3) For any integer n ≥ 1 one has

Φn =
∏

1≤j<n, g.c.d.(j,n)=1

(x− ζjn).

In particular, the degree of Φn is φ(n), where φ is Euler’s phi-function
defined by φ(n) = #(Z/nZ)∗.

Proof. (1) follows from the Lemma of Gauss applied to f = Xn − 1
and g = Φn.
(2) follows from (3), however, we will give here a direct proof as well.
Write f(x) = xp−1 + . . . + x + 1 and make the substitution x = 1 + t.
Then

f(1 + t) =
(1 + t)p − 1

(1 + t)− 1
=

p∑
i=1

(
p

i

)
ti−1

satisfies Eisenstein’s criterion and is therefore irreducible. It follows
that f itself is irreducible, and since f = (xp − 1)/(x− 1), the number
ζp is a zero of f . Hence f = Φp which is what we wanted to prove.
(3) xn−1 =

∏
1≤j≤n(x−ζj) and Φn can only contain the factors (x−ζj)

with gcd(j, n) = 1. Indeed, gcd(j, n) = d > 1 implies that ζj is a root
of xn/d − 1. From Φn(ζj) = 0 it would follow that Φn divides xn/d − 1
which leads to the contradiction ζn/d = 1.

In order to see that every x− ζj with gcd(j, n) = 1 is a factor of Φn,
we use a trick. Decompose j as a product p1 · · · pt of (not necessarily
distinct) prime factors. The pi do not divide n since gcd(j, n) = 1.
Write ζj = (· · · ((ζp1)p2) · · · )pt . We claim that the following statement
holds:

(*) if p does not divide n and if Φ(α) = 0, then Φ(αp) = 0.

Using this assertion one finds Φn(ζ) = 0⇒ Φn(ζp1) = 0⇒ Φn(ζp1p2) =
0⇒ · · · ⇒ Φn(ζj) = 0.

We will prove (*) by deriving a contradiction from the assumptions:
p 6 |n, Φn(α) = 0, Φn(αp) 6= 0.

The equality xn− 1 = Φn · f with f(αp) = 0 is clear. Now f(αp) = 0
means that α is a zero of f(xp). Therefore Φn divides f(xp). According
to the Lemma of Gauss, this division takes place in the ring Z[x]. Hence
Φn(xp)Φn(x) divides xpn − 1 in the ring Z[x]. After reduction modulo
p, one finds that Φ̄p+1

n divides xpn − 1 = (xn − 1)p in Fp[x]. However
p 6 |n and xn − 1 has only simple roots. The multiplicity of any root of
(xn− 1)p is p and this is the contradiction that we wanted to find. �
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The proof of the following corollary is left to the reader.

Corollary 4.2. The Galois group Gal(Q(ζn)/Q) is isomorphic to the
group (Z/nZ)∗.
This isomorphism identifies the unit a mod n with the field automor-
phism sending ζn to ζan.

Proposition 4.3 (Formulas for Φn). 1. xn − 1 =
∏

d|n Φd (i.e., the

product over all divisors d of n).
2. Φn =

∏
d|n(xd − 1)µ(n/d), where µ is the Möbius function given by

µ(1) = 1, µ(n) = 0 if n contains a square 6= 1and µ(p1 · · · pt) = (−1)t

if p1, . . . , pt are distinct primes.
3. Φnp(x) = Φn(xp) if the prime p does not divide n.
4. Φnp(x) = Φn(xp)Φn(x)−1 if the prime p divides n.

Proof. (1) can be proved by induction and the knowledge of the degree
of Φn.
(2) is a special case of the “Möbius inversion”. This is the statement

If for all n ≥ 1 the formula fn =
∏
d|n

gd holds, then

gn =
∏
d|n

f
µ(n/d)
d holds for all n ≥ 1.

In the proof of this inversion formula one uses the easily deduced for-
mulas

∑
d|n µ(d) = 0 for n > 1 and

∑
d|n µ(d) = 1 for n = 1.

The proofs of 3. and 4. are left as an exercise. �

4.1. Exercises.

(1) Give a proof of Corollary 4.2.

(2) Prove parts (3) and (4) of Proposition 4.3.

(3) Let λ ∈ Q. Prove that cos(2πλ) is algebraic over Q. Prove that
Q(cos(2πλ)) is a Galois extension. Determine its Galois group.

(4) Determine Φ72 in a handy way.

5. Galois correspondence and primitive elements

Let a Galois extension L/K with Galois group G be given. One
considers two sets,M, the set of the intermediate fields, i.e., the fields
M with K ⊂M ⊂ L and the set G of the subgroups of G.

There are two maps between those sets, α : M → G, defined by
α(M) = Gal(L/M) and β : G → M, defined by β(H) = LH , i.e., the
subfield of L consisting of the elements which are invariant under the
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action of H. It is obvious that the two maps reverse inclusions. What
is often called the “main theorem of Galois theory” is

Theorem 5.1 (The Galois correspondence). (1) α and β are each
others inverse.
(2) The subgroup H ∈ G is normal if and only if β(H) is a normal (or
Galois) extension of K.
(3) Suppose that H is a normal subgroup of G. Then M/K is a Galois
extension with Galois group G/H.

We will first prove a lemma.

Lemma 5.2. Suppose that the finite extension L/K has the property
that there are only finitely many intermediate fields. Then there is an
α ∈ L with L = K(α).

Proof. For a finite field K the proof is quite easy. L is also a finite
field and it is known that the multiplicative group L∗ of L is cyclic,
i.e., there is an element ξ with L∗ = {ξn|n ∈ Z}. Clearly L = K(ξ).
Suppose now that K is infinite and that L 6= K. Let n ≥ 1 be minimal
such that L = K(a1, . . . , an) for certain elements a1, . . . , an. We have
to show that n = 1. Suppose n ≥ 2 and consider for every λ ∈ K
the element bλ := a1 +λa2. The fields K(bλ) are intermediate fields for
L/K and thus there are λ1 6= λ2 with M := K(bλ1) = K(bλ2). The field
M contains a1 +λ1a2 and a1 +λ2a2. It follows that M = K(a1, a2) and
that L = K(bλ1 , a3, . . . , an). This contradicts the minimality of n. �

Proof. of Theorem 5.1
(1) βα(M) is the field LGal(L/M). Applying Lemma 3.3 to the Galois
extension L/M implies that LGal(L/M) = M . This implies that α is
injective. Since G is finite, also M is finite. Take H ∈ G and put
M = β(H) = LH . Clearly H ⊂ αβ(H). We have to prove equality.
According to Lemma 5.2 one can write L = M(a) for some a ∈ L.
Consider the polynomial G =

∏
σ∈H(x − σ(a)) ∈ L[x]. This polyno-

mial is invariant under the action of H. Therefore its coefficients are
also invariant under H and belong to M . Then G ∈ M [x] and the
minimal polynomial of a over M divides G. Thus [L : M ] ≤ #H and
#Gal(L/M) ≤ #H. Since H is a subgroup of Gal(L/M) one finds the
required equality H = Gal(L/M).
(2) The subgroup H corresponds to M = β(H) = LH . For a σ ∈ G one
has β(σHσ−1) = σ(M). Thus H is normal if and only if σ(M) = M for
all σ ∈ G. Using that L/K is normal and separable, one finds that the
latter property of M is equivalent with M/K normal (or also Galois).
(3) H is supposed to be normal and thus M := β(H) = LH satis-
fies σ(M) = M for all σ ∈ G. Thus one can define a restriction map
Gal(L/K)→ Gal(M/K). The kernel of this homomorphism is H. The
map is surjective since #(G/H) is equal to [M : K]. �
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Corollary 5.3 (The theorem of the primitive element). For every finite
separable extension L/K there is a cyclic element, i.e., an element
a ∈ L with L = K(a).

Proof. According to Lemma 5.2, it suffices to show that there are
finitely many intermediate fields for L/K. If we can show that L lies
in the splitting field L̃ of a separable polynomial, then there are only
finitely many intermediate fields for L̃/K and then also for L/K. Let
L/K be generated by elements a1, . . . , as. The minimal polynomial of
ai over K is denoted by Fi. We may suppose that F1, . . . , Ft are the
distinct minimal polynomials, then F := F1 · · ·Ft is separable and ev-
ery ai is a zero of F . The splitting field L̃ of F contains L and we are
done. �

5.1. Exercises.

(1) Prove that Q(
√

3,
√

5) is a Galois extension of Q. Determine the
Galois group, all intermediate subfields and a primitive element.

(2) The same questions for Q(e2πi/3, 3
√

3)/Q.

(3) Find all subfields of Q( 4
√

2, i) and a primitive element for each
of them. Which of these fields are normal over Q?

(4) One of the theorems in the Ph.D. thesis of Amol Sasane
(Groningen, 2001, advisor Prof. R. Curtain) states that
tan(π/2001) 6∈ Q. Prove this theorem.

(5) (a) Write tan(π/n) in terms of the primitive 4nth roots of unity
ζ = exp(2πi/4n).

(b) Determine the elements of Gal(Q(ζ)/Q) ∼= (Z/4nZ)∗ that
fix tan(π/n).

(c) Find the degree of Q(tan(π/n)) over Q.
(d) What are the (positive) integers n 6= 0 for which

tan(π/n) ∈ Q?

(6) (a) Prove that for an odd prime number p, the field Q(ζp) has
a unique subfield K with [K : Q] = 2.

(b) Find a condition on p such that K ⊂ R.
Hint: complex conjugation is an element of Gal(Q(ζp)/Q).
The question whether or not K is a real field is the same
as the question whether complex conjugation is an element
of the subgroup Gal(Q(ζp)/K).

(c) Write ε(n) := 1 if n mod p is a square in F∗p and ε(n) := −1
otherwise. Show that K/Q is generated by the element∑p−1

n=1 ε(n)ζnp .
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(7) Prove that the regular 7-gon cannot be constructed by ruler
and compass. Explanation: The admissible operations with
ruler and compass are: drawing a line through two points,
drawing a circle with given center and radius, intersecting
two lines, interseting a line with a circle and intersecting two
circles. Hint: Identify the plane with C. The points Q ⊂ C
are given. Prove that every “constructable” point a ∈ C gives
rise to a “tower of fields” Kn := Q(a) ⊃ Kn−1 ⊃ · · · ⊃ K0 = Q
with [Ki+1 : Ki] = 2 for every i.

(8) Cyclic extensions.
Let K be a field and n > 1 an integer. Suppose that the
characteristic of K is 0 or p with p 6 |n and that K contains
all the nth roots of unity. In this exercise we want to prove the
following statement:
E ⊃ K is a Galois extension with a cyclic Galois group of order
n if and only if E = K(α) where α is a root of an irreducible
polynomial xn − a ∈ K[x].
(a) Let f(x) = xn − a ∈ K[x] be an irreducible polynomial.
Show that f is separable. Show that the splitting field E of
f(x) over K is of the form K(α) with α a root of f(x) =
0. Furthermore, show that the Galois group of E over K is
generated by the map defined by α 7→ ζα where ζ is a primitive
nth root of unity.
(b) Let E be a Galois extension of K with a cyclic Galois group
of order n. Let σ generate the Galois group.
(i) One considers σ as a K-linear map on E as vector space over
K. Prove that every eigenvalue λ of σ satisfies λn = 1 and thus
belongs to K.
(ii) Prove that there is a basis of eigenvectors for σ. (Hint:
Jordan normal form).
(iii) Prove that every eigenvalue has multiplicity 1. (Hint: if
σei = λei for i = 1, 2 and e1 6= 0 6= e2, then σ( e1

e2
) = e1

e2
).

(iv) Prove that there is an α ∈ E with α 6= 0, σ(α) = ζα and ζ
a primitive nth root of unity.
(v) Show that the σi(α), i = 0, . . . , n − 1, are all distinct and
that therefore the minimal polynomial of α over K is xn − a
with a = αn ∈ K.


