
Jean-Pierre Serre:

the first Abel prize recipient (2003).
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born 15 September 1926

PhD in 1951 (“Homologie singulière des espaces fibrés. Appli-
cations”)

supervisor: Henri Cartan (Sorbonne, Paris)

1956–1994 professor in Algebra & Geometry at the Collège de
France (Paris)

Collected papers (4 volumes) contain 173 items (including many
letters and abstracts of courses given at the Collège de France)

13 books

Most recent text in Collected papers: 1998.

Most recent text according to MathSciNet: 2006.
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many distinctions

honorary degrees from Cambridge, Stockholm, Glasgow, Athens,

Harvard, Durham, London, Oslo, Oxford, Bucharest, Barcelona

honorary member or foreign member of many Academies of Sci-

ence (including KNAW, 1978)

Many Prizes (Fields Medal, Prix Gaston Julia, Steele Prize, Wolf

Prize, · · · · · ·)
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1954, ICM Amsterdam

Hermann Weyl presented the Fields Medals to Kunihiko

Kodaira (1915-1997) and to Serre
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commentary by Serre (email of 27 December 2004):

“· · · · · · I barely recognize myself on the picture where papy Her-

mann Weyl seems to tell me (and Kodaira): ”Naughty young-

sters! It is OK this time, but don’t do it again ! ” And he gave

my medal to Kodaira, and Kodaira’s medal to me, so that we

had to exchange them the next day.”
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Fields medal, 3 years after his PhD thesis, for two reasons:

1) The thesis work (introducing ‘spectral sequences’ in algebraic

topology; in particular the ‘Serre spectral sequence’);

2) Introducing ‘sheaf theory’ in complex analytic geometry.
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(commercial break)

Serre is an interested reader of the 5th Series of Nieuw Archief:

the quote above is part of his reaction

to the 1954 ICM pictures published in

NAW in December 2004;

he sent us several original letters from

him to Alexander Grothendieck, and

from Grothendieck to him, to be used

with a text John Tate wrote for NAW on

the Grothendieck-Serre correspondence

(March 2004)
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Serre and sports:

apart from skiing and rock climbing, used to be a quite good

table tennis player (but needed an excuse, age difference, when

finally losing from, e.g., Toshiyuki Katsura, 1989, Texel).
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experimental ‘science’

versus
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three conjectures

Serre: “Une conjecture est d’autant plus utile qu’elle est plus

précise, et de ce fait testable sur des exemples.”
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Serre’s problem on projective modules

1955, problem stated in the paper Faisceaux Algébriques Cohérents:

is every projective module M over a polynomial ring R = K[x1, . . . , xn]

(with K a field), free?

(projective means that M is a direct summand of a free module:

M ⊕N ∼= Rn for some module N and integer n)
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Answered independently by D. Quillen and A. A. Suslin (1976):

YES!
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Remark: over many other rings, projective 6= free!

Example 1: R := Z[
√
−5], M := {a + b

√
−5 ∈ R ; a ≡ b mod 2}.

then M is not free;

and R2 ∼= M ⊕M via the map

(f, g) 7→ (2f + (1 +
√
−5)g, (1−

√
−5)f + 2g)

(so M is projective)
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Example 2, more geometric (Möbius strip):

R := {f ∈ C∞(R) ; f(x + 2π) = f(x)}

(the ring of real C∞-functions on the circle)

M := {m ∈ C∞(R) ; m(x + 2π) = −m(x)}

As in the previous example, M is not free, but R2 ∼= M ⊕M ,

via (f(x), g(x)) 7→
(f(x) cos(x/2) + g(x) sin(x/2), f(x) sin(x/2)− g(x) cos(x/2)).
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Serre’s conjecture on modular forms (1987).

p(x) ∈ Z[x] monic, irreducible,

over C: p(x) =
∏
(x− αj);

K := Q(α1, . . .) field extension generated by the zeroes of p(x);

Gal(K/Q): the (finite) group of field automorphisms of K;

ρ : Gal(K/Q) ↪→ GL2(Fq) embedding into group of invertible 2×2

matrices over some finite field, with assumptions:
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1. Take c ∈ Gal(K/Q) complex conjugation restricted to K.

Then det(ρ(c)) = −1 ∈ Fq;

2. ρ is irreducible, i.e., there is no 1-dimensional linear subspace

V ⊂ F2
q such that ρ(g) sends V to V for every g ∈ Gal(K/Q).
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Conjecture (Serre): this situation arises from a modular form.

The work towards understanding this conjecture has been fun-

damental in, e.g., Wiles’ proof of Fermat’s Last Theorem

(work of Ribet, Edixhoven, quite recently Khare, Wintenberger,

Dieulefait)
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modular form: certain analytic function

H := {z ∈ C ; im(z) > 0} → C,

given by Fourier expansion f(z) = q + a2q2 + . . ., with q = e2πiz,

z ∈ H,

f(az+b
cz+d) = ε(d)(cz+d)kf(z) for all

(
a b
c d

)
∈ SL2(Z) with c a multiple

of N

The integer N > 0 is called the level of f ,

the integer k > 0 is called the weight of f

ε : (Z/NZ)∗ → C∗ is called the character of f
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ρ : Gal(K/Q) ↪→ GL2(Fq) ‘arises from the modular form f ’

means (somewhat imprecise):

there exists ϕ : Z[a2, a3, a4, . . .]→ Fq such that

trace(ρ(Fr`)) = ϕ(a`)

for all but finitely many prime numbers `.

To define Fr`: take splitting field F`n of p(x) mod `;

construct Z[α1, α2, . . .]→ F`n;

‘lift’ the field automorphism ξ 7→ ξ` of F`n to an automorphism

Fr` of Z[α1, α2, . . .] and of the field K.
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Serre gives a recipe that, given K and ρ, defines a ‘minimal’ level

N (with gcd(N, q) = 1), a minimal weight k, and the character

ε.

In the 90’s Ribet, Mazur, Carayol, Diamond, Edixhoven and oth-

ers proved, that if K and ρ arise from some modular form (with

level coprime to q), then also from one with the level and weight

predicted by Serre.
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A very simple example:

K is the extension (degree 6) of Q generated by the roots of

x3 − 4x + 4 = 0.

Then K = Q(α,
√
−11) with α any of the three roots;

Gal(K/Q) ∼= S3 (all permutations of the three roots);

Take any isomorphism ρ : Gal(K/Q)→ GL2(F2)

The pair (K, ρ) arises from the modular form

f(z) = q
∞∏

n=1

(1− qn)2(1− q11n)2.
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this means: write f(z) =
∑∞

m=1 amqm =

q−2q2−q3+2q4+q5+2q6−2q7−2q9−2q10+q11−2q12+4q13+. . .

For ` 6= 2, 6= 11 a prime number:

a` is odd
⇔

x3 − 4x + 4 is irreducible mod `
⇒

` ≡ 1,3,4,5,9 mod 11
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Also for the primes ` 6= 2, 6= 11:

x3 − 4x + 4 mod ` splits in three linear factors
⇔

a` is even & ` ≡ 1,3,4,5,9 mod 11

For odd primes ` ≡ 2,6,7,8,10 mod 11, the number a` is even

and x3 − 4x + 4 mod ` has a linear and a quadratic irreducible

factor.
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Serre’s conjecture on rational points on curves of genus 3 over

a finite field

(1985, course given at Harvard)

Finite field Fq (for simplicity: q odd).

Curve C of genus 3 over Fq:

either hyperelliptic, which means a complete curve (so, including

two points ‘at infinity’), given by an equation y2 = f(x), with

f(x) a polynomial of degree 8 over Fq without multiple factors;

or a nonsingular curve in P2 given by a quartic equation over Fq.
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more generally, a nonsingular curve in P2 given by an equation

of degree d has genus g = (d− 1)(d− 2)/2.

The set of points on C with coordinates in Fq is denoted C(Fq).

H. Hasse and A. Weil: #C(Fq) ≤ q + 1 + 2g
√

q (here g is the

genus of C)

Improvement by Serre (1985): #C(Fq) ≤ q + 1 + g[2
√

q] (here

[x] denotes the largest integer ≤ x)
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Serre’s conjecture: these bounds are sharp for g = 3, in the

following sense: there should exist an integer ε such that, for

every finite field Fq, a curve C of genus g = 3 over Fq exists with

#C(Fq) ≥ q + 1 + g[2
√

q]− ε

The analogous statement for g = 1 is true (M. Deuring, 1940’s)

Serre proves the analogous statement for g = 2 in his Harvard

course (1985)
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A similar conjecture for g >> 0 cannot be expected: fix q and

compare

lim
g→∞

q + 1 + g[2
√

q]− ε

g
= [2

√
q]

with a theorem of Drinfeld & Vladut (1983):

lim sup
g→∞

maxC of genus g #C(Fq)

g
≤ √q − 1
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some results towards this conjecture:

1) Ibukiyama, 1993: restrict to Fq with q odd, q a square but
not a fourth power. Then the conjecture holds, with ε = 0.

2) with R. Auer, 2002: restrict to Fq with q = 3n, all n ≥ 1.
Then the conjecture holds, with ε = 21.

3) Serre & Lauter, 2002 and independently Auer & Top, 2002:
take ε = 3 (we: ε = 21). For every finite field Fq, there exists a
curve C over Fq of genus 3 for which either

#C(Fq) ≥ q + 1 + g[2
√

q]− ε

or

#C(Fq) ≤ q + 1− g[2
√

q] + ε

(but cannot decide which of the two. . .)
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