Robust Synchronization of Uncertain Linear Multi-Agent Systems

Harry L. Trentelman*, K. Takaba** and N. Monshizadeh*

*Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands.
**Department of Electrical and Electronic Engineering, College of Science and Engineering, Ritsumeikan University, Japan

Kyoto University, 2012
Outline

1. Synchronization

2. Robust synchronization

3. Computation of robustly synchronizing protocols

4. Guaranteed robust synchronization radius

5. Future research
Agent dynamics

Multi-agent network with p agents, communication topology represented by the network graph. Vertices represent the agents, edges represent the communication. Identical nominal dynamics of the agents. Agent i has dynamics

$$\dot{x}_i = Ax_i + Bu_i, \quad y_i = Cx_i, \quad i = 1, 2\ldots, p$$

(A, B) is stabilizable, (C, A) is detectable. State $x_i \in \mathbb{R}^n$, input $u_i \in \mathbb{R}^m$, output $y_i \in \mathbb{R}^q$
Synchronization of multi-agent systems

Communication topology

Undirected or directed graph with \(p \) edges, with Laplacian

\[
L = D - A
\]

Degree matrix \(D = \text{diag}(d_1, d_2 \ldots d_p) \) with \(d_i \) the number of edges into node \(i \).

Adjacency matrix \(A = (a_{ij}) \) with

\[
a_{ij} = \begin{cases}
1 & \text{if there is an edge from } j \text{ into } i \\
0 & \text{otherwise}
\end{cases}
\]

Neighbouring set of agent \(i \) is \(\mathcal{N}_i := \{j \mid \text{there is an edge from } j \text{ into } i\} \).

Information of agent \(i \) about its neighbours is \(\sum_{j \in \mathcal{N}_i} (y_i - y_j) \).
The synchronization problem is the problem of finding a protocol that makes the network synchronized. We consider dynamic protocols of the form

\[\dot{w}_i = Aw_i + BF \sum_{j \in N_i} (w_i - w_j) + G \left(\sum_{j \in N_i} (y_i - y_j) - Cw_i \right), \quad u_i = Fw_i. \]

Structure of the protocol: combination of observer for the \(i \)th relative state \(\sum_{j \in N_i} (x_i - x_j) \) and static feedback of the estimate \(w_i \) of this relative state.

Error \(e_i := w_i - \sum_{j \in N_i} (x_i - x_j) \) satisfies \(\dot{e}_i = (A - GC)e_i \)

Note: design parameters are the gains \(F \) and \(G \).
Network dynamics

Interconnecting the agents using this protocol yields the closed loop dynamics of the overall network. Denote $\mathbf{x} = \text{col}(x_1, x_2, \ldots, x_p)$, $\mathbf{w} = \text{col}(w_1, w_2, \ldots, w_p)$. Network dynamics:

$$
\begin{pmatrix}
\dot{x} \\
\dot{w}
\end{pmatrix} =
\begin{pmatrix}
I \otimes A \\
L \otimes GC \\
I \otimes (A - GC) + (L \otimes BF)
\end{pmatrix}
\begin{pmatrix}
x \\
w
\end{pmatrix}
$$

Definition

The network is said to be synchronized by the dynamic protocol if for all $i, j = 1, 2, \ldots, p$ we have $x_i(t) - x_j(t) \to 0$ and $w_i(t) - w_j(t) \to 0$ as $t \to \infty$.
Synchronization of multi-agent systems

Laplacian eigenvalues

Undirected graph: L real symmetric. Graph connected $\iff L$ has rank $p - 1$. In that case the eigenvalue 0 has multiplicity one. Remaining $p - 1$ eigenvalues: $0 < \lambda_2 \leq \lambda_3 \leq \ldots \leq \lambda_p$.

Directed graph: L complex eigenvalues. Graph contains a spanning tree $\iff L$ has rank $p - 1$. In that case the eigenvalue 0 has multiplicity one. Remaining $p - 1$ eigenvalues: $\lambda_2, \lambda_3, \ldots, \lambda_p$ and $\Re(\lambda_i) > 0$.

Theorem

The protocol $\dot{w}_i = Aw_i + BF \sum_{j \in \mathcal{N}_i} (w_i - w_j) + G (\sum_{j \in \mathcal{N}_i} (y_i - y_j) - Cw_i)$, $u_i = Fw_i$. synchronizes the network if and only if for $i = 2, 3, \ldots, p$ the matrices

$$
\begin{pmatrix}
A & \lambda_i BF \\
GC & A - GC + \lambda_i BF
\end{pmatrix}
$$

are Hurwitz.
Corollary

The protocol synchronizes the network if and only if the single linear system

\[\dot{x} = Ax + Bu, \quad y =Cx \]

is internally stabilized by all \(p - 1 \) feedback controllers

\[\dot{w} = Aw + Bu + G(y - Cw), \quad u = \lambda_i Fw, \quad i = 2, 3, \ldots, p. \]

This holds if and only if \(A - GC \) and \(A + \lambda_i BF \) \((i = 2, 3, \ldots, p)\) are Hurwitz. Such \(F \) and \(G \) exist if and only if \((C, A)\) is detectable and \((A, B)\) is stabilizable.
Outline

1. Synchronization

2. Robust synchronization

3. Computation of robustly synchronizing protocols

4. Guaranteed robust synchronization radius

5. Future research
Additive uncertainty

Idea: agent dynamics is uncertain (→ heterogeneity) Here: additive perturbations.

Nominal transfer matrix of agent i: $G(s) = C(sI - A)^{-1}B$ perturbed to $G(s) + \Delta_i(s)$, $\Delta_i \in R \mathcal{H}_\infty$.

This means that the dynamics of agent i is perturbed to the system obtained by interconnecting

$$\dot{x}_i = Ax_i + Bu_i, \; y_i = Cx_i + d_i, \; z_i = u_i$$

with $d_i = \Delta_i z_i$.

Uncertainty radius: $\eta > 0$ given, perturbations $\Delta_i \in R \mathcal{H}_\infty$ with $\|\Delta_i\|_\infty \leq \eta$.

The dynamics of agent i is any system with transfer matrix of the form $G + \Delta_i$ with $\|\Delta_i\|_\infty \leq \eta$.
Robust synchronization

Definition

Given $\eta > 0$, the problem of robust synchronization is to find a dynamic protocol such that for all i and for all $\Delta_i \in R \mathcal{H}_\infty$ with $\|\Delta_i\|_\infty \leq \eta$ the network is synchronized, i.e. for all $i,j = 1,2\ldots,p$ we have $x_i(t) - x_j(t) \to 0$ and $w_i(t) - w_j(t) \to 0$ as $t \to \infty$.

Weighted protocol

For robust synchronization we modify the earlier protocol to include a weighting factor on L:

$$\dot{w}_i = Aw_i + BF \sum_{j \in \mathcal{N}_i} \frac{1}{N} (w_i - w_j) + G\left(\sum_{j \in \mathcal{N}_i} \frac{1}{N} (y_i - y_j) - Cw_i \right), \quad u_i = Fw_i.$$

N is a positive real number that, next to F and G, needs to be determined.
Theorem

Let $\eta > 0$. The following two statements are equivalent:

1. The weighted dynamic protocol (depending on F, G and N) synchronizes the network with perturbed agent dynamics

\[\dot{x}_i = Ax_i + Bu_i, \quad y_i = Cx_i + d_i, \quad z_i = u_i, \quad d_i = \Delta_i z_i \]

for all $\Delta_i \in \mathbb{R} \mathcal{H}_\infty$ with $\|\Delta_i\|_\infty \leq \eta$

2. the single perturbed linear system

\[\dot{x} = Ax + Bu, \quad y = Cx + d, \quad z = u, \quad d = \Delta z \]

is internally stabilized for all $\Delta \in \mathbb{R} \mathcal{H}_\infty$ with $\|\Delta\|_\infty \leq \eta$ by all $p - 1$ feedback controllers

\[\dot{w} = Aw + Bu + G(y - Cw), \quad u = \frac{1}{N} \lambda_i F w, \quad i = 2, 3, \ldots, p \]
Robust synchronization

Simultaneous \mathcal{H}_∞-controllers

By the small gain theorem: given $\eta > 0$, find $N \in \mathbb{R}$, and gain matrices F and G such that all $p-1$ controllers solve the \mathcal{H}_∞-control problem for the system $\dot{x} = Ax + Bu$, $y = Cx + d$, $z = u$:

- the interconnection of the system with the ith controller is internally stable
- $\|G_i\|_\infty < \frac{1}{\eta}$, where G_i is the closed loop transfer matrix from d to z of the interconnection of the system with the ith controller.

In the sequel, we will explain how to obtain such N, F and G.
Outline

1. Synchronization
2. Robust synchronization
3. Computation of robustly synchronizing protocols
4. Guaranteed robust synchronization radius
5. Future research
Riccati equation and inequality

Associated with \((A, B, C)\) consider the ARE

\[
A^\top P + PA - \gamma PBB^\top P = 0
\]

together with the strict Riccati inequality

\[
AQ + QA^\top - QC^\top CQ < 0.
\]

\(\gamma > 0\) to be determined. Let \(P(\gamma) \geq 0\) be the maximal real symmetric solution. \(A - \gamma BB^\top P(\gamma)\) is Hurwitz (assuming \(A\) has no eigenvalues on the imaginary axis). Let \(Q > 0\) be any solution of the inequality.
Choose \(N > \frac{\lambda_2}{\lambda_p} \), equivalently \((\frac{\lambda_p}{N})^2 < \frac{\lambda_2}{N}\). Choose \(\gamma \) such that
\[
(\frac{\lambda_p}{N})^2 < \gamma < \frac{\lambda_2}{N}
\]
Let \(\eta > 0 \) be such that
\[
\eta < \frac{1}{\sqrt{\rho(P(\gamma)Q)}}.
\]
Define
\[
F := -B^\top P(\gamma), \quad G := (I - \eta^2 QP(\gamma))^{-1} QC^\top
\]
Then the dynamic protocol with this \(N, F \) and \(G \) synchronizes the network for all perturbations \(\Delta_i \in \mathbb{R} H_\infty \) \((i = 1, 2 \ldots, p)\) with \(\| \Delta_i \|_\infty \leq \eta \).
Let $\lambda_2, \lambda_2, \ldots, \lambda_p$ the nonzero eigenvalues of L. Within this set let λ_m have minimal real part, λ_M have maximal modulus, and λ_ℓ have maximal argument, i.e.:

$$\text{Re}(\lambda_m) = \min_{i=2,\ldots,p} \text{Re}(\lambda_i),$$

$$|\lambda_M| = \max_{i=2,\ldots,p} |\lambda_i|,$$

$$\text{Arg}(\lambda_\ell) = \max_{i=2,\ldots,p} \text{Arg}(\lambda_i).$$

Note: $-\pi/2 < \text{Arg}(\lambda_i) < \pi/2$.

Harry L. Trentelman, K. Takaba and N. Monshizadeh (Johann Bernoulli Institute for Mathematics and Computer Science, Eindhoven University of Technology)

Robust Synchronization of Uncertain Linear Multi-Agent Systems

Kyoto University, 2012
Main theorem, directed graphs

For $N > 0$, define

$$f_N := \frac{\text{Re}(\lambda_m)}{|\lambda_M|^2} N.$$

Choose N such that

$$f_N > 1, \text{ and } f_N + \frac{1}{f_N} > 2 + 4 \tan^2(\text{Arg}(\lambda_\ell))$$

(such N always exists!). Choose

$$\gamma = \frac{1}{2} \left(\frac{|\lambda_M|^2}{N^2} + \frac{\text{Re}(\lambda_m)}{N} \right)$$

Let $P(\gamma)$ maximal solution of the ARE, $Q > 0$ any solution of the strict Riccati inequality,
Let $\eta > 0$ be such that

$$\eta < \frac{1}{\sqrt{\rho(P(\gamma)Q)}}$$

Define

$$F := -B^T P(\gamma), \quad G := (I - \eta^2 QP(\gamma))^{-1} QC^T$$

Then the dynamic protocol with this N, F and G synchronizes the network for all perturbations $\Delta_i \in \mathcal{RH}_\infty$ ($i = 1, 2, \ldots, p$) with $\|\Delta_i\|_\infty \leq \eta$.
Computation of robustly synchronizing protocols

Example

Directed cycle graph with three vertices:

\[
L = \begin{pmatrix}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1 \\
\end{pmatrix}
\]

Nonzero eigenvalues: \(\lambda_2 = \frac{3}{2} + j\frac{1}{2}\sqrt{3} \), \(\lambda_3 = \frac{3}{2} - j\frac{1}{2}\sqrt{3} \). \(\text{Re}(\lambda_m) = \frac{3}{2} \), \(|\lambda_M|^2 = 3 \) and \(\tan^2(\text{Arg}(\lambda_\ell)) = \frac{1}{3} \). Thus \(f_N = \frac{N}{2} \).

Conditions on \(N \): \(\frac{N}{2} > 1 \) and \(\frac{N}{2} + \frac{2}{N} > \frac{10}{3} \), equivalently \(N > 6 \).

As an example take \(N = 10 \). Then take \(\gamma = \frac{1}{2} \left(\frac{3}{N^2} + \frac{3}{2N} \right) = 0.09 \), etc.
1. Synchronization
2. Robust synchronization
3. Computation of robustly synchronizing protocols
4. Guaranteed robust synchronization radius
5. Future research
Question: for a given a multi-agent system,

- what is its guaranteed robust synchronization radius, i.e. the supremum over all values of $\eta > 0$ such that a suitable weighted dynamic protocol achieves synchronization for all Δ_i with $\|\Delta_i\|_\infty \leq \eta$

- How does it depend on the network graph?

Here: only the undirected graph case. It turns out that a guaranteed radius can be found that is proportional to the quotient λ_2/λ_p of the second smallest and largest eigenvalue of the Laplacian:
Theorem, undirected graphs

Let P^+ and Q^+ be the maximal real symmetric solutions of the Riccati equations

$$A^TP + PA - PB^TBP = 0, \quad AQ + QA^T - QC^TCQ = 0$$

Then for each $\eta > 0$ that satisfies

$$\eta < \frac{\lambda_2}{\lambda_p} \frac{1}{\sqrt{\rho(P^+Q^+)}}$$

there exists a dynamic protocol achieving synchronization for all perturbations $\Delta_i \in \mathcal{RH}_\infty$ with $\|\Delta_i\|_\infty \leq \eta$.

Guaranteed robust synchronization radius
Guaranteed robust synchronization radius

Some special cases

- **Complete graphs** $\lambda_2 = \lambda_p = p$. Take $N > p$, and $\frac{p^2}{N^2} < \gamma < \frac{p}{N}$. $\frac{\lambda_2}{\lambda_p} = 1$, which is maximal.

- **Star graphs** $\lambda_2 = 1$ and $\lambda_p = p$. Take $N > p^2$ and $\frac{p^2}{N^2} < \gamma < \frac{1}{N}$. $\frac{\lambda_2}{\lambda_p} = \frac{1}{p}$, decreases with increasing number of agents.

- **Line graphs** $\lambda_2 = 2(1 - \cos \frac{\pi}{p})$ and $\lambda_p = 2(1 + \cos \frac{\pi}{p})$. For large p we have $\lambda_2 \approx 0$ and $\lambda_p \approx 4$. N will then be very large, while γ will be very small. $\frac{\lambda_2}{\lambda_p}$ is small for large p.

- **Cycle graphs** $\lambda_2 = 2(1 - \cos \frac{2\pi}{p})$ and

\[
\lambda_p = \begin{cases}
4 & p \text{ even} \\
2(1 + \cos \frac{\pi}{p}) & p \text{ odd}
\end{cases}
\]

For large p we have $\lambda_2 \approx 0$ and $\lambda_p \approx 4$. $\frac{\lambda_2}{\lambda_p}$ will be small for large p.

Harry L. Trentelman, K. Takaba and N. Shirzadeh (Johann Bernoulli Institute for Mathematics and Computer Science, The University of Groningen, The Netherlands and Department of Electrical and Electronic Engineering, College of Science and Engineering, Ritsumeikan University, Japan)

Robust Synchronization of Uncertain Linear Multi-Agent Systems

Kyoto University, 2012 24 / 26
Outline

1. Synchronization
2. Robust synchronization
3. Computation of robustly synchronizing protocols
4. Guaranteed robust synchronization radius
5. Future research
Future research

- Different types of uncertainty: coprime factor uncertainty, multiplicative uncertainty
- Nominal linear dynamics but nonlinear perturbations
- Extension to multi-agent systems with nonlinear nominal dynamics

THANK YOU!