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PROLOGUE

It all started in 1904 at the International Mathematical Congress in Heidelberg, when Ludwig
Prandtl give a lecture entitled “Über Flüssigkeitsbewegungen bei sehr kleiner Reibung” (En-
glish: “On fluid flow with very little friction”). He explained that the viscosity of a fluid plays
a role in a (very) thin layer adjacent to the surface, which he called “Uebergangsschicht” or
“Grenzschicht”. Translated into English, the latter led to the term boundary layer. With this
lecture, the understanding of fluid flow was significantly increased. For instance, d’Alembert’s
Paradox, stating that a body placed in a potential flow does not experience a force – clearly
in conflict with every-day experience – was resolved. Subsequently, it could be explained,
e.g., why birds and airplanes can fly. The thus far invisible boundary layer was responsible.
Finally, as a spin-off, a new branch of mathematics was created: singular perturbation theory.

In these lecture notes we will have a closer look at the flow in boundary layers. At vari-
ous levels of modeling the featuring physical phenomena will be described. Also, numerical
methods to solve the equations of motion in the boundary layer are discussed. Outside the
boundary layer the flow can be considered inviscid (i.e. non viscous). The overall flow field
is found by coupling the boundary layer and the inviscid outer region. The coupling process
(both physically and mathematically) will also receive ample attention.

It is recommended to have some basic knowledge of fluid dynamics and numerical meth-
ods for solving partial differential equations, for instance from the RuG lectures on Fluid
Dynamics, Numerical Mathematics and/or Computational Fluid Dynamics.

Groningen, Spring 2012
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Chapter 1

THE BOUNDARY-LAYER
EQUATIONS

As Prandtl showed for the first time in 1904, usually the viscosity of a fluid only plays a
role in a thin layer (along a solid boundary, for instance). Prandtl called such a thin layer
“Uebergangsschicht” or “Grenzschicht”; the English terminology is boundary layer or shear
layer (Dutch: grenslaag).

In this first chapter Prandtl’s theory will be described, and the equations of motion that
are valid in such a boundary layer are presented. As a starting point, the equations capable
to describe the flow of any fluid (liquid or gas) are taken: the Navier–Stokes equations.

The large influence of the boundary layer is
visible in the accompanying illustrations. Here
the solution is shown of two computations of
flow past an RAE 2822 airfoil: a ‘viscous’ com-
putation with boundary layer and an ‘inviscid
= non-viscous’ computation without boundary
layer. (In computer simulation it is very easy
to switch certain physical effects on and off; in
an experiment that is usually more difficult. . . )
It is clear1 that the lift (Dutch: draagkracht)
of the wing is significantly lowered by the pres-
ence of the boundary layer. The adjacent fig-
ure also shows a comparison with experiment2.
The most important reason for the difference
between theory and experiment, visible as a
difference in shock position, is the uncertainty
in turbulence modeling.

1Lift is generated by a difference in pressure between upper and lower side: it equals the surface area
between the upper and lower curve in the plot.

2The difference between theory and experiment in the pressure distribution at the leading edge of the airfoil
is caused by a small discrepancy between the shape of the scale model that was actually used in the wind
tunnel experiments and the intended airfoil shape as used in the computations.

1
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Inviscid computation Viscous computation

1.1 The Navier–Stokes equations

The motion of a continuous medium can be described by kinematic and dynamic conservation
laws for mass, momentum and energy, extended with thermodynamical equations of state.
These will be formulated in terms of independent variables in space x = (x1, x2, x3)

t and in
time t. The dependent variables are denoted as

velocity vector u = (u1, u2, u3)
t,

density ρ,
pressure p,
internal energy e,
temperature T .

The equations are presented in conservation form for a Cartesian coordinate system. Dif-
ferentiation with respect to the i-th coordinate direction of a quantity φ is denoted as ∂iφ.
Further, the sommation convention for repeated indices is used.

Conservation of mass

Conservation of massa is described by the equation of continuity

∂tρ+ ∂i(ρui) = 0. (1.1)

Conservation of momentum

The momentum equation (Dutch: impulsvergelijking) reads

∂t(ρui) + ∂j(ρuiuj) = ρFi + ∂jσij . (1.2)

Fi is the i-component of an external force per unit of mass and volume; σ = (σij) is the stress
tensor. The stress tensor describes the force acting on the interface between fluid elements.
It consists of a component perpendicular to the interface (normal stress) and a component
in the interface (shear stress). In an inviscid medium only the normal stress exists, which is
termed pressure; in a viscous medium additional terms are present, which together form the
viscous stress tensor τ . Whence

σij = −p δij + τij , (1.3)



1.1. THE NAVIER–STOKES EQUATIONS 3

with δij the Kronecker symbol. In a so-called Newtonian medium the viscous stress tensor
is linearly proportional to the velocity gradient. For a medium in local thermodynamic
equilibrium this leads to the following model for τ :

τij = 2µ(eij − 1
3ekkδij), (1.4)

where

eij = 1
2(∂jui + ∂iuj)

is the deformation tensor, and µ the dynamical or molecular viscosity.

The above equations (1.2), with the stress tensor formulated according to (1.3) and (1.4),
are the factual Navier–Stokes equations: presented by Navier in 1823 and (independently) by
Stokes in 1845. In every-day practice, the name also covers the continuity equation (1.1) and
the energy equation (1.5).

Conservation of energy

Conservation of total energy E = e+ 1
2uiui can be formulated as

∂t(ρE) + ∂i(ρEui) = ρFiui + ∂j(uiσij)− ∂iqi. (1.5)

In the right-hand side two terms can be recognized describing the work done by the external
and internal forces, and a term featuring the heat flux qi. For many fluids, the heat flux is
proportional to the temperature gradient (Fourier’s law)

qi = −k ∂iT. (1.6)

Equations of state

The above set of equations has to be closed with two thermodynamic equations of state. For
an ideal gas these read

p = ρRT and e = cvT. (1.7)

R = cp− cv, with cp and cv the specific heats. The latter usually are assumed to be constant.
Finally, the dependence of µ and k depend on the state of the fluid has to be specified, in
particular on the temperature T .

The equations (1.1), (1.2) and (1.5) are valid for each viscous, heat conducting fluid.
The equations (1.3), (1.4), (1.6) and (1.7) make more specific statements about the fluid.
When µ = 0 and k = 0 (i.e. no viscosity and no heat conduction) the Euler equations arise,
formulated by Euler already in 1755.

Incompressible formulation

When the fluid is incompressible, i.e. when its density ρ is constant, the equations of motion
can be simplified. The continuity equation becomes

∂iui = 0, (1.8)
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and the momentum equation now reads

∂tui + ∂j(uiuj) = Fi +
1

ρ
∂jσij . (1.9)

When also the viscosity µ is assumed constant, these two equations are sufficient to describe
the flow. The temperature can be obtained from the following version of the energy equation

∂t(cvT ) + ∂j(cvTuj) =
1

ρ
∂i(k ∂iT ) + 2µ eij ∂jui. (1.10)

The above equations have to be supplied with boundary conditions. Along a solid boundary
the velocity component perpendicular to the boundary has to be zero; for a viscous fluid
also the tangential velocity has to vanish (no-slip condition). Further, along the boundary
the temperature can be prescribed or its normal derivative (adiabatic boundary). At in- and
outflow boundaries other conditions do apply (see the CFD lecture notes).

By expanding the stress tensor σij in (1.9), and by using (1.8), the Navier–Stokes equations
for an incompressible fluid can be written as

divu = 0, (1.11)

∂u

∂t
+ (u · grad)u = F − 1

ρ
grad p+ ν div gradu. (1.12)

Here the kinematic viscosity ν = µ/ρ has been introduced.

When an internal flow is simulated, without in- or outflow openings, i.e. in a domain Ω
with solid boundary Γ, at the boundary only a condition for the velocity u can be formulated.
As indicated above, usually this condition will be

u = 0 along Γ. (1.13)

1.2 The boundary-layer approximation

The Navier–Stokes equations are considered sufficiently general to describe the Newtonian
fluids appearing in hydro- and aerodynamics. The solution of these equations is a complex
job, also with computational means (despite the fast computers available nowadays). Fortu-
nately, the equations contain terms that can be neglected in large parts of the flow domain.
This allows the equations to be simplified, and herewith to reduce the effort for solving them.

The terms that describe the viscous shear stresses offer such a possibility for simplifica-
tion. These terms are only of interest in local areas of high shear (boundary layer, wake).
Outside these areas ‘non-viscous’ equations can be used.

We begin with the derivation of the equations that describe the flow in shear layers, like
boundary layers and wakes. Starting point are the Navier–Stokes equations for steady, two-
dimensional, incompressible flow, where the density ρ is assumed constant. The equations
are formulated in a Cartesian coordinate system (x, y) with velocity components (u, v). It is
further assumed that the x-axis coincides (locally) with the solid boundary.
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The equations of motion for steady two-dimensional incompressible flow are

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
,

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
.


(1.14)

Along a solid surface the velocity satisfies (u, v) = (0, 0). The second condition

v = 0 at a solid surface (1.15a)

also holds for non-viscous flow. The first condition

u = 0 at a solid surface (1.15b)

only holds for viscous flow. This is the no-slip condition, and prevents the shear stress at the
wall to become infinite. When the flow is studied at a molecular level this condition has to
be adapted; in practice this is only relevant for highly rarefied gases.

Estimates outside the boundary layer

Next a global estimate of the order of magnitude of the various terms in the Navier–Stokes
equations is derived. Firstly, we will study the flow field not too close to the body surface. In
such a situation the flow contains a length scale L determined by the geometry of the body;
for an airfoil the chord length would be characteristic. Not too close to the body it may be
assumed that variations in flow variables will only appear on this length scale.

-

6

� -L

distance

characteristic length

Further, as a velocity scale the problem possesses the magnitude of the oncoming flow U∞.
Any variations in velocity will also be of that order. In this way, derivatives of the velocity
can roughly be estimated according to

∂u

∂x
∼ U∞

L
;

similar for the other first-order derivatives. Hence, in the continuity equation both terms are
of equal importance.
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In the x-momentum equation the convective terms can be estimated as

u
∂u

∂x
∼ U2

∞
L

(the other term is equally large),

and the diffusive terms as

ν
∂2u

∂x2
∼ νU∞

L2
.

The ratio between these two types of terms is

convection

diffusion
∼ U∞L

ν
≡ Re, (1.16)

the Reynolds number (Dutch: Reynoldsgetal). This ratio holds in areas where L is the char-
acteristic length scale. The y-momentum equation can be treated in a similar fashion.

When the Reynolds number is large, outside the boundary layer the Navier–Stokes equa-
tions can be simplified to the Euler equations

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
,

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
.

 (1.17)

This system requires less boundary conditions than Navier–Stokes. As a consequence, one of
the boundary conditions from (1.15a, 1.15b) has to be dropped. Obviously, this should be the
condition caused by the viscosity, as we have removed the viscosity from the mathematical
model. Hence, along a solid wall only the condition

v = 0 (normal velocity)

may be prescribed. In general, the tangential velocity will not be zero. Therefore, along a solid
boundary an Euler solution will usually not satisfy the boundary conditions for Navier–Stokes.
Apparently, the Navier–Stokes solution becomes quite different from the Euler solution, at
least in the neighborhood of the boundary. With this reasoning, heuristically the presence
of a boundary layer close to the wall can be motivated. In this layer, the flow will possess
another length scale, namely the distance to the wall. Now the above reasoning has to be
reconsidered.

Examples: For many flows the Reynolds number is very large, for example the flow of air
around a car or an airplane, or the flow of water around a ship. The following table shows
the coefficients of viscosity for air and water (at 15◦C and 1 atm).

ρ (kg/m3) µ (kg/m sec) ν (cm2/sec)

air 1.225 1.78 · 10−5 1.45 · 10−5

water 0.9991 · 103 1.137 · 10−3 1.138 · 10−6

It follows that air is over 10 times as viscous as water! For a number of applications this
yields the following Reynolds numbers:
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medium char. vel. char. length Re

cyclist (tourist) air 15 km/h 0.5 m 1 · 105

golf ball (pro) air 200 km/h 0.04 m 2 · 105

speed skater (pro) air 45 km/h 0.8 m 5 · 105

swimmer (pro) water 5 km/h 1.5 m 2 · 106

car air 120 km/h 4 m 1 · 107

shark water 20 km/h 4 m 2 · 107

airplane (wing) air 900 km/h 3 m 5 · 107

ship water 20 km/h 200 m 1 · 109

Estimates inside the boundary layer

In the boundary layer, the tangential velocity of the Euler solution has to be brought back
to zero at the wall.

-

6

x, u

y, v
-

u

6

?

δ

����������������������������������������

Let us now try to estimate the thickness of this boundary layer. For simplicity we will
consider the boundary layer along a straight boundary, coinciding with the x-axis. First, our
assumptions will be made more precise:

1. the velocity at the outer edge of the boundary layer is of the order U ;

2. the derivatives in x-direction can be estimated by means of a characteristic length L
that is independent of ν;

3. the thickness of the boundary layer has a characteristic size δ with δ � L; derivatives
in y-direction can be based upon this length scale;

4. no external influence exists (like e.g. a shock wave) that introduces a special scale for
the pressure gradient; the pressure gradient adapts to the other terms in the equations.

The estimations start with the continuity equation

∂u

∂x
+
∂v

∂y
= 0.

The first term ∂u/∂x ∼ U/L, which then should also hold for the second term ∂v/∂y. At the
surface v = 0, which implies that inside the boundary layer

v ∼ δU

L
.
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Next the x-momentum equation is considered

u
∂u

∂x
+ v

∂u

∂y︸ ︷︷ ︸
U2

L

= −1

ρ

∂p

∂x
+ ν

∂2u

∂x2︸ ︷︷ ︸
νU
L2

+ ν
∂2u

∂y2︸ ︷︷ ︸
νU
δ2

.

We conclude:

• both convective terms are equally large ∼ U2/L;

• the diffusive term with the x-derivatives is much smaller than that with the y-derivatives;

• the largest of the diffusive terms balances with the convective terms when

U2

L
∼ νU

δ2
⇒ δ

L
∼
√

ν

UL
= Re−1/2. (1.18)

Finally, the momentum equation in y-direction is considered

u
∂v

∂x
+ v

∂v

∂y︸ ︷︷ ︸
U2δ
L2

= −1

ρ

∂p

∂y
+ ν

∂2v

∂x2︸ ︷︷ ︸
νUδ
L3

+ ν
∂2v

∂y2︸ ︷︷ ︸
νU
δL

.

The convective term and the diffusive term in y-direction are equally important, ∼ U2δ/L2,
and this determines the order of magnitude of ∂p/∂y. The pressure variation across the
boundary layer becomes ∼ ρU2δ2/L2. The x-momentum equation yields the pressure itself
to be ∼ ρU2. Hence, in first approximation, the pressure can be considered constant in the
y-direction.

When these estimates are substituted in the Navier–Stokes equations, the following system
of equations is left

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
,

0 = −1

ρ

∂p

∂y
.


(1.19)

These are the boundary-layer equations (Dutch: grenslaagvergelijkingen), with which the flow
in a shear layer can be approximately described. The corresponding boundary conditions are

at the surface (y = 0) : u = v = 0 ;
at the edge (y = ye) : u = ue , p→ pe,

(1.20)

where ue and pe follow from the inviscid Euler solution. The index ‘e’ stems from the word
’edge’ (Dutch: rand). Herewith, at the outer boundary the tangential velocity at the surface
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from the Euler flow (which would not vanish) is prescribed. From the Euler equation (1.17)
at the surface, where v = 0, it follows

ue
due
dx

= −1

ρ

∂pe
∂x

, (1.21)

and this form of Bernoulli’s equation can be substituted in (1.19). Then the x-momentum
equation becomes

u
∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+ ν
∂2u

∂y2
. (1.22)

Next we will analyze the mathematical character of the system (1.19)+(1.22). Hereto it
is reformulated as a first-order system by introducing ∂u/∂y = ω: 0 1 0

v 0 −ν
1 0 0


︸ ︷︷ ︸

A

 u
v
ω


y

+

 1 0 0
u 0 0
0 0 0


︸ ︷︷ ︸

B

 u
v
ω


x

=

 0

ue
due
dx
ω



The characteristic directions λ = dx/dy follow from det(λA − B) = 0. This results in a
3-fold root λ = 0, with characteristic direction x = Constant. This situation cannot be fully
labelled along theoretical lines. When v ≡ 0, (1.22) shows a parabolic character with stable
direction x → ∞ for u > 0; for u < 0 this direction switches. We will come back to this
later. This consideration suggests that, for u > 0, the x-direction is a time-like direction, and
that the system can be solved by a ‘marching’ process in x-direction. As initial condition
the velocity profile of u has to be prescribed upstream (only ∂u/∂x appears in the equation;
∂v/∂x is not present). This is in contrast to the full Navier–Stokes equations which also
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do require boundary conditions downstream. The steady Navier–Stokes equations possess a
partly elliptic character through their diffusive terms. But also without diffusion, i.e. Euler,
the acoustical part of the equation (divu & grad p) provides an elliptic character (see PDV
lecture notes - Veldman 1996). It will be clear that the boundary-layer equations can be
solved much more easily than Navier–Stokes and Euler.

Not alone in the boundary layer, but in more parts of the flow domain the Navier–Stokes
equations can be simplified. Outside the boundary layer the Euler equations are valid. These
are essential when strong shocks appear in the flow, because in the shock rotation is generated.
For weak shocks the flow can be modeled as a potential flow (which is irrotational). In the
above figure, the subdivision of the flow field according to the relevant modeling is shown;
such a subdivision is termed zonal modeling.

1.3 Influence of boundary layer on external flow

Because the boundary layer is very thin, in first instance this suggests to compute the external
flow around the ‘clean’ body, i.e. without boundary layer. Based on the external streamwise
velocity, thereafter the boundary layer can be computed. Finally, the external flow has to be
corrected for the presence of the boundary layer.

Displacement thickness

The effect of the boundary layer on the external flow is expressed in a quantity called dis-
placement thickness (Dutch: verdringingsdikte), denoted by δ∗. Via the no-slip condition,
the streamwise velocity in the boundary layer is smaller than it would have been in an invis-
cid flow. As a consequence, the transport of mass also becomes smaller. The displacement
thickness denotes how much the wall has to be shifted for an inviscid flow past the displaced
wall to have the same mass transport as the viscous flow along the original wall, i.e.

�
�
�

�
�

�
�
�

�
��
�
�
��

�
�
�
�

�
�
�
��

�
�
�

��

�
��

-
uey

6

?
δ∗ u -

6

∫ ye

0
u(x, y) dy =

∫ ye

δ∗
ue(x) dy,

where ye is chosen sufficiently large (there u ≈ ue
should hold). As a consequence, in the adjacent fig-
ure, where u has been plotted as a function of y, the
shaded areas have the same surface area. By rewriting
the above definition we find

δ∗(x) =
1

ue(x)

∫ ∞
0
{ue(x)− u(x, y)} dy. (1.23)

δ∗ gives the modified shape of the body as it is experienced by the external flow: the body
looks thicker because of the lower velocities in the boundary layer.

This can be further explained by considering the vertical velocity in the boundary layer.
The continuity equation gives

∂v

∂y
= −∂u

∂x
.
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As u = ue at the edge of the boundary layer, it can be expected that v grows linearly according
to v ∼ −y due/dx. The next term in the series expansion of v for large y is the interesting
one. Suppose

v(x, y) ∼ −due
dx

y + v1(x) + · · · , y →∞,

then we have

v1(x) = lim
y→∞

[
v(x, y) +

due
dx

y

]
= lim

y→∞

[∫ y

0

∂v

∂y
(x, y) dy +

due
dx

y

]
= lim

y→∞

[∫ y

0
−∂u
∂x

(x, y) dy +
due
dx

y

]
= lim

y→∞

[∫ y

0

{
due
dx
− ∂u

∂x
(x, y)

}
dy

]
=

d

dx

∫ ∞
0

(ue − u) dy ≡ d

dx
(ueδ

∗). (1.24)

At the outer edge of the boundary layer the vertical velocity behaves like

v(x, y) ∼ −due
dx

y +
d

dx
(ueδ

∗), y →∞. (1.25)

To have a smooth match with the external flow, this also has to hold for the vertical velocity
of the external flow close to the wall. In more detail we must have

vEIF (x, 0) ≈ d

dx
(ueδ

∗). (1.26)

In first instance we had chosen this expression to be zero.

-

6

�
�
�
�
�
�
�
�
�
�
�
�

@@I extrapolated inviscid v (EIF)@@R

viscous v
(RVF)

RVF = real viscous flow
EIF = extrapolated inviscid flow

v

vEIF (x, 0)@@I

y

In the above interpretation, the presence of the boundary layer can be formulated as a
transpiration velocity through the surface. An alternative formulation states that the displace-
ment body is a streamline of the external flow. This immediately follows from the expansion
of v given in (1.25). Choose y = δ∗, and note that high in the boundary layer u ≈ ue, then
we have

v(x, δ∗) ≈ −due
dx

δ∗ +
d

dx
(ueδ

∗) = ue
dδ∗

dx
,
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such that
v

u
(x, δ∗) ≈ dδ∗

dx
, (1.27)

stating that y = δ∗ is a streamline.

In Chapter 4 we will formulate the above heuristics in terms of singular perturbation
theory.

Momentum thickness

Next to an equation based on mass transport, we also can compare the viscous and inviscid
flow based on momentum transport. Thus, the momentum thickness (Dutch: impulsverlies-
dikte) is defined as the additional distance (compared to the δ∗) over which the wall has to
be displaced such that an inviscid flow produces the same momentum transport:∫ ye

δ∗+θ
u2e dy =

∫ ye

0
u2 dy.

Herewith we have

θ =
1

u2e

∫ ∞
0

(u2e − u2) dy − δ∗ =
1

u2e

∫ ∞
0

u(ue − u) dy. (1.28)

This quantity is related to the drag caused by the boundary layer, as shown next.

A

D C

B

6

?

hboundary-layer edge-U∞

Consider the above control volume and monitor the conservation of momentum in x-
direction, i.e. conservation of ρu. The increase in momentum has to be caused by external
forces. Such forces are generated by the pressure and by the viscous (shear/normal) stresses.
We obtain

∂

∂t

∫
V
ρu dV +

∫
S
ρu un dS =

∫
S

(σ · n)x dS, (1.29)

with σ the stress tensor and (σ · n)x the x-component of the force exerted on a surface with
normal n.
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For incompressible flow we have

σij = −p δij + µ (∂jui + ∂iuj),

which describes the i-component of the force per surface unit acting on a surface element with
normal in the j-direction. In our analysis we are only interested in the forces in x-direction.
Changing the notation gives

σxx = −p+ 2µ
∂u

∂x
, σxy = µ

(
∂u

∂y
+
∂v

∂x

)
.

In steady equilibrium, in (1.29) the ∂/∂t-term drops out, and we are left with∫
BC

ρu2 dS +

∫
DC

ρuv dS −
∫
AD

ρu2 dS =

= −
∫
AB

µ
∂u

∂y
dS +

∫
BC

(−p+ 2µ
∂u

∂x
) dS +

∫
DC

µ

(
∂u

∂y
+
∂v

∂x

)
dS +

∫
AD

(p− 2µ
∂u

∂x
) dS,

where we have used already that v = 0 at the surface. Further, in the viscous terms the
contribution of µ∂u/∂y at the surface dominates because ∂u/∂y is larger than ∂u/∂x. Also
the contributions from the pressure cancel, because in a Blasius flow the pressure is constant.
Finally, when the other viscous contributions are neglected, the following relation remains∫

BC
ρu2 dS +

∫
DC

ρuv dS −
∫
AD

ρu2 dS = −
∫
AB

µ
∂u

∂y
dS ≡ −DB.

The right-hand side equals the drag (Dutch: weerstand) D that the flow experiences due the
viscous forces (shear stress - Dutch: schuifspanning) along the surface up to the point B.

AD is chosen far enough upstream such that u = U∞, the oncoming flow. Along the plate
ue = U∞. Further, CD is chosen high enough such that u ≈ U∞, but v is not zero (the flow
has to make way due to the displacement effect). We are left with

DB =

∫ h

0
ρ(U2

∞ − u2) dy − U∞
∫
DC

ρv dx.

From mass conservation for the control volume information can be obtained on the behavior
of v along the upper side∫

BC
ρudS +

∫
DC

ρv dS −
∫
AD

ρudS = 0 =⇒
∫
DC

ρv dS =

∫ h

0
ρ(U∞ − u) dy.

Substituting this results in

DB = ρ

∫ h

0
u(U∞ − u) dy evaluated at B,

where without problems we can let h → ∞ since u approaches U∞ = ue sufficiently fast.
Recognizing the definition of the momentum thickness (1.28), the drag of the plate (upto the
point B) can be written as

DB = ρU2
∞θ(B). (1.30)
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Skin-friction coefficient

We have just encountered the shear stress along the surface. This quantity is often denoted
by

τw ≡ µ
∂u

∂y

∣∣∣∣
wall

. (1.31)

The corresponding non-dimensional coefficient is called the skin-friction coefficient (Dutch:
schuifspanningscoëfficiënt)

cf ≡
τw

1
2ρu

2
e

. (1.32)

As we just saw, the shear stress produces the viscous contribution to the drag.

1.4 Similarity solutions

To find ‘analytical’ solutions of partial differential equations, like the boundary-layer equa-
tions, often similarity solutions are sought. Inspired by the method of separation of variables,
it is hoped to find solutions with a similarity structure. For the boundary-layer equations we
look for velocity profiles that are the same at each x-station apart from a scaling (in space
and/or in magnitude):

u(x, y) = ue(x) f ′(η) with η = y/L(x).

This will be substituted in (1.22) to find out whether there exist special choices of ue(x) which
allow for such a similarity solution.

First, the streamfunction is introduced

Ψ(x, y) ≡
∫ y

0
udy = ue(x)L(x)f(η),

with which the vertical velocity is given by

v(x, y) = −∂Ψ

∂x
= − d

dx
(ueL) f(η)− ueLf ′(η)

∂η

∂x
.

Substitution in the x-momentum equation gives

uef
′
(

due
dx

f ′ + uef
′′ ∂η

∂x

)
−
(

d

dx
(ueL) f + ueLf

′ ∂η

∂x

)
ue
L
f ′′ = ue

due
dx

+ ν
ue
L2
f ′′′,

which can be rewritten as

ue
due
dx

(
(f ′)2 − ff ′′

)
− u2e
L

dL

dx
ff ′′ = ue

due
dx

+ ν
ue
L2
f ′′′. (1.33)

If we would succeed to divide the x-dependency out of the equation, then an ordinary dif-
ferential equation in only one independent variable η is obtained. This will be successful
when

ue
due
dx
∼ u2e

L

dL

dx
∼ ν ue

L2
.
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It simply can be verified that the choice

ue ∼ U xp, L ∼
√
ν

U
xq with q = 1

2(1− p) (1.34)

satisfies the above condition. Recognize in L the proportionality with Re−1/2 deduced earlier.

The inviscid velocity ue from (1.34) corresponds
with flow past a wedge (Dutch: wig). To show
this, using conformal mapping, we will calculate
the potential past a wedge with full opening an-
gle βπ . When the wedge lies in a complex z-
plane, then the conformal mapping

−ζ = (−z)
2

2−β (1.35)

maps this wedge onto the positive real axis
in the ζ-plane. The −-signs in this map are
necessary to position the cuts along the positive
real axis (i.e. inside the wedge).

HH
HH

HH
HH
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HH
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y
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?
βπ/2

The complex velocity potential χ corresponding to the flow along the flat plate in the
ζ-plane is χ = Uζ. In the z-plane, the corresponding complex velocity potential is obtained
from substitution of the conformal mapping (1.35). Hence

χ = −(−z)
2

2−βU

describes the flow past the wedge3. The velocity field follows from dχ/dz (we need only its
absolute velocity):

|u| = |u− iv| =
∣∣∣∣dχdz

∣∣∣∣ =
2U

2− β
|z|

β
2−β .

Falkner–Skan equation

Thus the streamwise velocity along the surface of the wedge is given by (note x = |z| is the
distance from the nose)

ue(x) = U xβ/(2−β). (1.36)

Herewith, we have obtained the required form of ue for the existence of similarity solutions
of the boundary-layer equations. Via p = β/(2− β) and q = 1

2(1− p) = (1− β)/(2− β), see
(1.34), we arrive at

u(x, y) = ue(x) f ′(η) with η =

√
U

ν(2− β)
x(β−1)/(2−β) y, (1.37)

where the scale factor in η has been chosen such that (1.38) becomes simpler. From (1.33) it
follows that the function f(η) satisfies the Falkner–Skan equation (1930)

f ′′′ + ff ′′ + β
(
1− (f ′)2

)
= 0, f(0) = f ′(0) = 0, f ′(∞) = 1. (1.38)

3Since the streamfunction Ψ = =mχ = 0 for ζ along the positive real axis, the streamfunction also vanishes
when z lies on the wedge ⇒ the wedge is a streamline.
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This equation does not possess a solution for all β. Nowadays (i.e. since the late 1970’s) we
know that this property is related to the problems that are encountered in boundary layers
featuring flow separation.

When 0 ≤ β ≤ 1 a unique solution exists, in which f ′ → 1 exponentially for η →∞. When
β∗ ≡ −0.1988 · · · < β < 0 two solutions exist with this property. One of these solutions has
f ′′(0) > 0, while for the other solution f ′′(0) < 0. The latter solution shows backflow (Dutch:
terugstroming), i.e. it features an area where f ′(η) < 0. The figure above gives a sketch of
the corresponding streamline patterns; the figure below shows the velocity profiles.

The latter figure also shows two other important quantities: f ′′(0) which is related to the
shear stress, and δ ≡

∫∞
0 (1− f ′(η))dη = lim

η→∞
{η− f(η)} which is related to the displacement

thickness. When −1 ≤ β < β∗ no exponentially decaying solutions exist, whereas for |β| > 1
an abundance of solutions exists (Oskam & Veldman 1982; Botta et al. 1986). Which role
these solutions play in practice is still unclear. Through (1.36) the parameter β is linked to
the velocity gradient (pressure gradient):

β

2− β
=

x

ue

due
dx

. (1.39)

Flat plate

An important special case is β = 0, corresponding with flow past a flat plate. This case is
named after Blasius, who discussed it in 1908. The streamwise velocity of the potential flow
is simply constant ue = U . The coordinate transformation (1.37) gives

η = y

√
U

2xν
. (1.40)

Thus the thickness of the boundary layer grows proportional to
√
x.
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The velocity profile u = Uf ′(η) satisfies the Blasius equation

f ′′′ + ff ′′ = 0, f(0) = f ′(0) = 0, f ′(∞) = 1.

Its solution, experimentally observed, is shown above. Important values are f ′′(0) = 0.4696
and δ = 1.217. The skin friction coefficient becomes

cf =
µ

1
2ρU

2

∂u

∂y

∣∣∣∣
y=0

=
µ

1
2ρU

2

√
U

2xν

∂u

∂η

∣∣∣∣
η=0

=

√
2ν

xU
f ′′(0) = 0.664

√
ν

xU
,

and the displacement thickness

δ∗ =
1

U

∫ ∞
0

(U − u) dy =

√
2xν

U

∫ ∞
0

(1− f ′) dη =

√
2xν

U
δ.

Often, by lack of another length scale, a Reynolds number is introduced based on the distance
from the leading edge

Rex =
Ux

ν
.

In terms of this Reynolds number we can write

cf = 0.664 Re−1/2x and δ∗ = 1.721xRe−1/2x . (1.41)
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The momentum thickness is given by

θ =
1

U2

∫ ∞
0

u(U − u) dy =

√
2xν

U

∫ ∞
0

f ′(1− f ′) dη

=

√
2xν

U
[f − ff ′ − f ′′]∞0 =

√
2xν

U
f ′′(0) = 0.664xRe−1/2x . (1.42)



Chapter 2

TURBULENT FLOW

For not too large Reynolds numbers the flow looks smooth. The streamlines are nicely parallel
to each other, as in thin layers (Greek: lamina). We call this laminar flow. For larger Reynolds
numbers such a flow becomes unstable for disturbances. As a result the flow appears much
more irregular: turbulent flow. Below a snapshot of a turbulent boundary layer is shown.
Both the laminar and the turbulent parts of the flow can be seen very clearly.

2.1 Structure of a turbulent boundary layer

The seemingly chaotic behavior of turbulent flow enhances the exchange of momentum in
comparison with laminar flow. Since the shear stress is directly proportional, it is relatively
large in turbulent shear layers. The larger momentum transport makes turbulent velocity

19
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profiles much fuller than laminar velocity profiles. The wall shear stress is larger, resulting in
a larger drag.
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Typical velocity profiles for laminar and turbulent flow along a flat plate are shown in
the first of the above figures (taken from Moran 1984). The other figure shows the wall
shear stress as a function of the distance to the leading edge (non-dimensional Rex). For
Re>≈ 3× 105 the flow can become turbulent, with its corresponding larger cf . The laminar
solution of Blasius has been discussed in §1.4. The transition from laminar to turbulent flow
takes place in a transition process to which we return in §2.3.

The velocity profile of a turbulent boundary layer is quite different from that of a laminar
boundary layer (see preceding section). We will have a close look at it now. In a turbulent
boundary layer often three regions (layers) are distinguished:

• an outer layer (Dutch: buitenlaag) which is sensitive to the properties of the external
flow;

• an inner layer (Dutch: binnenlaag) where turbulent mixing is the dominant physics;

• a laminar sublayer (Dutch: laminaire sublaag) close to the surface where the turbulent
stresses are negligible with respect to µ∂u/∂y (the no-slip condition implies u′ = v′ = 0
at the surface).

These layers naturally blend into each other (sometimes the blending region between laminar
sublayer and inner layer is called buffer zone). The figure above shows a velocity profile,
plotted against a logarithmic scale in y (be aware!) which shows the inner layers much
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thicker than they actually are. The profile has been made non-dimensional with the friction
velocity (Dutch: wrijvingssnelheid)

uτ ≡
√
τw/ρ, (2.1)

in which τw is the shear stress along the surface.

Laminar sublayer

In the laminar sublayer the shear stress is dominated by the molecular contribution τ =
µ∂u/∂y. As this layer is very thin, τ cannot be much different from its value at the wall τw.
Hence in this layer we have approximately

u ≈ τw
µ
y.

Combining this with (2.1) yields

u+ ≡ u

uτ
≈ ρuτy

µ
≡ y+. (2.2)

Observe that y+ is a Reynolds number based on uτ and the distance to the wall. This quantity
is plotted horizontally in the graph.

Inner layer

In the inner layer it is assumed that turbulent mixing is so important that properties of the
external flow (outside the boundary layer) do not have influence. In that case, only one
velocity scale can be made with the available parameters, namely

√
τ/ρ. As characteristic

value we take uτ , as defined in (2.1). To estimate the slope of the velocity profile we need
a length scale ` that is characteristic is for the mixing process. We call ` the mixing length
(Dutch: mengweglengte), and obtain as an estimate

∂u

∂y
≈ uτ

`
. (2.3)

In the boundary layer only one length scale is available, namely the distance to the wall y.
The mixing length is therefore chosen proportional to this distance:

` ≡ κy, (2.4)

with κ a non-dimensional constant. Now

∂u

∂y
=
uτ
κy
,

which can be integrated to
u

uτ
=

1

κ
ln y + C ′.

Introducing C ′ = κ−1ln(ρuτ/µ) + C, and using the notation from (2.2) the standard form of
the law-of-the-wall (Dutch: wandwet) is obtained

u+ ≡ u

uτ
=

1

κ
ln y+ + C. (2.5)
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This formula fits experimental data very well for κ = 0.41 and C = 5.0, as shown clearly
in the above graph. The constant κ is named after Theodore Von Kármán (1930). The
velocity profiles in the laminar sublayer (2.2) and in the inner layer (2.5) match continuously
in y+ ≈ 11.

Outer layer

In the outer layer the wall profile has to be adapted such that for large y it obtains a shape
that ‘smoothly’ approaches ue. This profile has to be dependent of the y-coordinate scaled
by the boundary-layer thickness, i.e. y/δ(x). For small y the adaptation should be small, say
∼ y2. This gave Coles (1956) the idea to use a ‘sin2 y’-function. He suggested the following
velocity profile, which turns out to fit many experimental data

u+ =
1

κ
ln y+ + C +

2

κ
Π(x) sin2

(
πy

2δ(x)

)
, y ≤ δ(x). (2.6)

This velocity profile is also very useful in the inner layer, where y/δ(x) is small. For y = δ(x)
the velocity has to match the external flow, which yields

ue
uτ

=
1

κ
ln
δuτ
ν

+ C +
2

κ
Π. (2.7)

In total we now have three unknowns uτ , δ and Π. One equation has been given in (2.7),
two more equations are needed. These will be derived from the equations of motion; more on
this subject in Chapter 3.

2.2 Reynolds-averaged equations

Turbulent flow still can be described by the equations of motion from Chapter 1. These
equations do allow solutions with a very small length scale and time scale. To describe these
phenomena with a discrete numerical method, very fine computational grids with very small
time steps are required. This is impossible with the current performance of computers. There-
fore, the influence of the small-scaled phenomena on the larger scales, which can be resolved
by the grid, is usually described by a turbulence model.

Osborne Reynolds was the first who, around 1890, followed such an approach. He assumed
a clear distinction in time scale between the local turbulent phenomena and the more global
phenomena in the flow. This allows to divide the variables into a mean value and a fluctuation.
For instance

u = ū + u′, p = p̄+ p′, (2.8)

in which ū is the mean value of u over a time interval T that is small with respect to the
global time scale but large w.r.t. the turbulent time scale:

ū(x, t) =
1

T

∫ t+T

t
u(x, τ) dτ. (2.9)

For the incompressible case we will elaborate this a bit. Substitute (2.8) in (1.8)+(1.9)

and integrate these equations between t and t + T . As approximately
∫ t+T
t u′ dτ = 0, by
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definition of ū, the terms that are linear in u and p do not contribute from u′ of p′. Only the
convective term ∂j(uiuj) provides a source for the appearance of u′. The following system of
equations emanates

∂iūi = 0,

∂tūi + ∂j (ūiūj) + ∂jRij = F̄i +
1

ρ
∂j σ̄ij . (2.10)

Here the Reynolds stress tensor

Rij = u′iu
′
j + u′iūj + ūiu′j (2.11)

has been introduced. It stems from the convective terms, but it has the appearance of a
stress tensor; therefore it is usually combined with the stress tensor σij . Subsequently some
approximations are introduced. When ūi and ūj are constant over the integration interval
(t, t+ T ) the following expressions are valid

u′iūj = 0, ūiu′j = 0, ūiūj = ūiūj and ∂tūi = ∂tūi. (2.12)

In general (2.12) only holds approximately. After substitution of (2.12) in (2.10) the Reynolds-
averaged Navier–Stokes (RaNS) equations follow

∂iūi = 0,

∂tūi + ∂j (ūiūj) = F̄i + ∂j

(
1

ρ
σ̄ij + R̃ij

)
(2.13)

where R̃ij = −u′iu′j .

The problem with solving these time-averaged Navier–Stokes equations are the new un-
knowns u′i, for which in first instance no equation is available. Finding such an equation
is called the closure problem (Dutch: sluitingsproblem). This is the essence of turbulence
modeling: R̃ij has to be expressed in known quantities like ū and p̄. More on this in §2.3.

The estimation of the magnitude of the Reynolds stresses proceeds somewhat different
than in §1.2. There – with change of notation u = (u, v) – v � u, but for the fluctuations
u′ and v′ this does not hold; in general u′ and v′ will be of equal magnitude. The Reynolds
stresses u′v′, u′2 and v′2 are all three equally large. But, as before, y-derivatives will be larger
than x-derivatives, hence simplification is possible. Often the following terms are left in the
boundary-layer approximation:

ū
∂ū

∂x
+ v̄

∂ū

∂y
= −1

ρ

∂p̄

∂x
+

∂

∂y

(
µ

ρ

∂ū

∂y
− u′v′

)
, (2.14a)

0 = −1

ρ

∂p̄

∂y
+

∂

∂y

(
µ

ρ

∂v̄

∂y
− v′2

)
. (2.14b)

The most important term neglected in the x-momentum equation (2.14a) is ∂(u′2)/∂x which
is a factor δ/L smaller than the term ∂(u′v′)/∂y (in laminar flow the factor between both
diffusive terms is δ2/L2). In the y-momentum equation (2.14b) we sometimes retain part of
the diffusive term. The Reynolds stress part learns that ∂p̄/∂x and ∂p̄/∂y are comparable.
But since y is small, the pressure variation in vertical direction is of lower order than p̄ itself;
therefore ∂p̄/∂y = 0 is still often used.
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2.3 Turbulence models

We will now return to the contribution of u′v′ in the x-momentum equation (2.14a). An
equation has to be found which describes this contribution: the closure problem.

One way is to multiply the Navier–Stokes equations with u or v. Then expressions are
formed of the products of velocities, but with 3 velocity factors, à la (u′)2v′. Subsequently
we have to come up with something for this kind of terms. In other words: this is replacing
one problem with another.

The more brisk way is to directly produce formulas for u′v′ that reasonably match experi-
mental data. Hereto, first it is assumed that the turbulent events are proportional to velocity
differences in the boundary layer. By observing that the Reynolds stress tensor Rij appearing
in (2.13) is similar to the stress tensor σij , a Boussinesq-type suggestion is made

Rij = ε(∂jui + ∂iuj).

Thus the following closure relation is assumed

−u′v′ ≡ ε∂u
∂y
, (2.15)

where ε is called the eddy viscosity. The name stems from the larger structures in turbulent
flow, which are called ‘eddies’ (Dutch: draaikolken). In this way the shear stress, see (2.14a),
can be approximated as

τ = µ
∂u

∂y
− ρu′v′ ≈ (µ+ ρε)

∂u

∂y
. (2.16)

The quantity ε has dimension velocity × length. Therefore it is written as

ε = vt`, (2.17)

with vt a velocity scale to be chosen, and ` the mixing length from §2.1.

Cebeci-Smith model

The simple algebraic turbulence models choose for vt Prandtl’s mixing length model (1925)

vt = `

∣∣∣∣∂u∂y
∣∣∣∣ . (2.18)

Together with (2.17) this results in

ε = `2
∣∣∣∣∂u∂y

∣∣∣∣ met ` = κy. (2.19)

In the sublayer this model does not work satisfactory. Therefore, Van Driest (1956) proposed
to change the expression for ` into

` = κy
(

1− e−y+/A+
)
, (2.20)
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with, as before, y+ = yuτ/ν, uτ =
√
τw/ρ and A+ = 26. For small y+ (2.20) reduces the

value of ` with respect to the original expression; this is plausible since next to the wall less
length is available for the mixing. Also in the outer layer, ε is often modified; for example as

ε = 0.0168 ueδ
∗. (2.21)

-

6

y

ε
ueδ∗

0.0168

Eddy viscosity according to Cebeci-Smith

The equations (2.19)-(2.21) form the eddy-viscosity model of Cebeci–Smith (1967, 1974),
much used in aerodynamics where the bodies often are very slender.

k − ε model

Of course, it is very well possible to choose quite something different for vt in (2.17). We
will discuss such a model, that is especially being used in hydrodynamics: the k − ε model
(Launder & Spalding 1972). In this model, first the turbulent kinetic energy is introduced:

k =
1

2
u′iu
′
i.

For k a transport equation is postulated. Such a transport equation consists of a convective
part, a dissipative part and, sometimes, a production part (source term).

In boundary-layer approximation the equation for k usually looks like

u
∂k

∂x
+ v

∂k

∂y︸ ︷︷ ︸
convection

= νt

∣∣∣∣∂u∂y
∣∣∣∣2 − ε︸ ︷︷ ︸

production

+
∂

∂y

(
ν +

νt
σk

)
∂k

∂y︸ ︷︷ ︸
diffusion

,

with νt = cµk
2/ε, and ε the dissipation of the kinetic energy.

For ε also an equation has to be found. Unfortunately, physical insight hardly gives any
clues; many versions exist. We describe one popular version in boundary-layer approximation

u
∂ε

∂x
+ v

∂ε

∂y
=

[
cε1νt

∣∣∣∣∂u∂y
∣∣∣∣2 − cε2ε

]
ε

k
+

∂

∂y

[(
ν +

νt
σε

)
∂ε

∂y

]
.

This equation has been chosen such that its mathematical structure is similar to that of the
k-equation. The free constants usually are chosen as

cµ = 0.09, cε1 = 1.44, cε2 = 1.92, σk = 1, σε = 1.3.
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Both equations require boundary conditions at the surface and at the outer edge. At the sur-
face, based on the behavior as described in §2.1 a wall function for k and ε can be formulated
in the inner layer. As boundary condition for the equations continuity is required of k and ε
at the transition from inner and outer layer (near y+ ≈ 11). At the outer edge again many
variants are possible: the simplest is k = ε = 0 as y →∞.

Many other turbulence models have been formulated. An overview can be found e.g. on
the webpage www.cfd-online.com/Wiki/Turbulence modeling.

Transition

At the end of this chapter on turbulent flow we close with some remarks on the transition from
laminar to fully turbulent flow. This transition is triggered when a laminar flow is no longer
able to damp disturbances; loosely spoken, ‘the boundary layer gets exhausted’ (Dutch: ’de
grenslaag raakt vermoeid’). This is due to the decelerating influence of the wall.

Stability analysis of the boundary-layer equations is limited since the equations are non-
linear. Models that describe transition do exist, but they are very approximate. Much more
urgent than for the modelling of turbulence, direct simulations, with their required resolution
in space and time, are necessary to create more insight in the transition behavior.

The ‘grand challenge’

It must be stressed that the modeling of turbulence and transition is the most important
problem in flow simulation. It will remain challenging for many years to come; we give an
impression of its current status.

For attached (Dutch: aanliggend) flow the situation is most optimistic; most turbulence
models give good results (at fixed transition). However, often the flow features recirculation
zones, e.g. behind sluice gates and breakwaters, behind buildings and hart valves, behind
cars, ships and airplanes, in combustion chambers and cooling systems, etc. For these appli-
cations still no turbulence models exist that can provide flow simulations with the accuracy
as requested by industry.

As an example we discuss the flow around airplane wings during take-off and landing,
where (due to the low air speed) the lift coefficient has to be as large as possible. Accord-
ing to potential-flow theory, the lift increases proportional with the angle of attack (Dutch:
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invalshoek). However, viscous effects, in particular the decambering (Dutch: ontwelving) of
the profile due to the displacement effects of the boundary layer, lead to a smaller increase
in lift. Even, at a certain angle of attack the lift starts to decrease, around the moment that
massive (trailing-edge) separation sets in. Also, the drag of the profile is rising sharply. The
graph below (taken from Torenbeek & Wittenberg 2002) shows the behaviour of lift and drag
with increasing angle-of-attack. It will be clear that the value of maximum lift is one of the
most essential parameters in wing design; the flow behaviour in separated flow regions plays
a crucial role here.

The uncertainty in turbulence modeling for this situation is currently larger than the dif-
ference between the boundary-layer approximation and the full Navier–Stokes equations. As
an illustration we show in the α − CL plane (angle-of-attack versus lift) a number of com-
putations for the RAE 2822 profile under conditions near maximum lift. The graph shows a
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close-up of the situation around point B in the above figure (although another airfoil is in-
volved). In 1987, this flow case was the subject of a workshop (Holst 1987), in which various
Navier–Stokes and boundary-layer methods participated. The figure also shows an experi-
mental result. All Navier–Stokes computations are close together, but they predict a lift that
is too high. The boundary-layer methods, however, come closer to the experiment. Most of
the latter methods make use of an integral formulation (see Chapter 3), in which the flow is
modeled in an ‘engineering’ way.

Therefore, at this moment it is not yet worthwhile in airplane design to apply the more
than 100× as expensive Navier–Stokes methods. In the future, when our knowledge of tur-
bulence has increased sufficiently, this will change undoubtedly. It is expected that extremely
expensive direct numerical simulations, with sufficient resolution of all space and time scales,
are necessary to design better turbulence models. Finding such models, necessary to keep the
calculation times acceptable for industrial applications, is one of the ‘Grand Challenges’ of
modern science and engineering.

The above challenge has been envisioned already by Sir Horace Lamb in 1932, then aged
83, when he stated in a speech to the British Association for the Advancement of Science:

I am an old man now, and when I die and go to heaven there are two matters on
which I hope for enlightenment. One is quantum electrodynamics, and the other
is the turbulent motion of fluids. And about the former I am rather optimistic.

According to another apocryphal story, Werner Heisenberg was asked what he would ask
God, given the opportunity. His reply was:

When I meet God, I am going to ask him two questions: Why relativity? And why
turbulence? I really believe he will have an answer for the first.

The situation has not changed significantly since then (see e.g. Speciale & So 1998).
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Chapter 3

INTEGRAL FORMULATION

3.1 The Von Kármán equation

In the time that solving partial differential equations was in its infancy, people have been
looking for more global descriptions of the flow. For the description of a boundary layer,
formulations have been sought which average in vertical direction. In this way, ordinary
differential equations in streamwise direction are left; but of course we loose flow details in
normal direction.

The x-momentum equation (1.22) can be rewritten as

∂

∂x
(u2) +

∂

∂y
(uv) = ue

due
dx

+
1

ρ

∂τ

∂y
. (3.1)

This equation is integrated between y = 0 and y = h, where we will specify the outer edge
later: ∫ h

0

∂

∂x
(u2) dy + uv

∣∣∣∣h
0

= ue
due
dx

h+
τ

ρ

∣∣∣∣h
0

. (3.2)

The vertical velocity at the outer edge is found from the continuity equation

v
∣∣∣h
0

=

∫ h

0

∂v

∂y
dy = −

∫ h

0

∂u

∂x
dy.

At the wall y = 0 we have u = v = 0 and τ = τw. When h is chosen outside the boundary
layer, then u = ue and τ = 0. Substitution hereof in (3.2) leads to∫ h

0

∂

∂x
(u2) dy − ue

∫ h

0

∂u

∂x
dy = ue

due
dx

h− τw
ρ
.

The pressure gradient is shifted to the left-hand side∫ h

0

∂

∂x
(u2 − u2e) dy − ue

∫ h

0

∂

∂x
(u− ue) dy = −τw

ρ
.

The integrands decay fast enough when y →∞, and the ∂/∂x is moved outside the integral.
Then we arrive at

d

dx

∫ ∞
0

(u2e − u2) dy − ue
d

dx

∫ ∞
0

(ue − u) dy =
τw
ρ
,

31
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which can be rewritten via the definitions from §1.3 as

d

dx

[
u2e(θ + δ∗)

]
− ue

d

dx
(ueδ

∗) =
τw
ρ
.

Finally we expand all differentiations and divide by u2e. Then we obtain

dθ

dx
+

θ

ue
(2 +H)

due
dx

= 1
2cf , (3.3)

in which

H ≡ δ∗/θ

is the shape factor (Dutch: vormfactor), and cf is the skin friction coefficient defined in §1.3.
This momentum integral equation was introduced by Von Kármán in 1921.

The equation contains a number of unknowns: θ, H and cf . To determine these two
additional relations are required. These are constructed along many (creative) ways, of which
we give an example.

A possibility to create an extra equation is to multiply (3.1) with u and then to integrate.
An equation based on the energy is then obtained. Using the continuity equation, the starting
point is written as

u2
∂u

∂x
− u∂u

∂y

∫ y

0

∂u

∂x
dy − u ue

due
dx

=
µ

ρ
u
∂2u

∂y2
. (3.4)

This equation is integrated with respect to y between 0 and h. The second term at the
left-hand side gives

∫ h

0

[
u
∂u

∂y

∫ y

0

∂u

∂x
dy

]
dy =

∫ h

0

∫ y

0

∂u

∂x
dy d(12u

2) =

1
2u

2

∫ y

0

∂u

∂x
dy

∣∣∣∣h
0

−
∫ h

0

1
2u

2∂u

∂x
dy = 1

2

∫ h

0
(u2e − u2)

∂u

∂x
dy.

The first and the third term of (3.4) give together

∫ h

0

[
u2
∂u

∂x
− u ue

due
dx

]
dy = 1

2

∫ h

0
u
∂

∂x
(u2 − u2e) dy.

Together with a partial integration of the right-hand side of (3.4) this results in

1
2

d

dx

∫ ∞
0

u(u2e − u2) dy =
µ

ρ

∫ ∞
0

(
∂u

∂y

)2

dy, (3.5)

where the limit h→∞ has been taken. This is the energy integral equation.
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3.2 History of solution methods

In the past - laminar

Fist observe that the shape of a laminar velocity profile has quite smooth curves, resem-
bling those of polynomials. Thus, the first calculations methods used simple polynomials
to approximate the velocity profile u(x, y). Pohlhausen (1921) for example used a 4◦-degree
polynomial

u

ue
= a+ bη + cη2 + dη3 + eη4 , η ≤ 1,

with η = y/δ(x), in which δ(x) is the still unknown boundary-layer thickness. In total 6
unknowns have to be solved from the following 6 equations

at the surface: u = 0, ue
due
dx

= −ν ∂
2u

∂y2
;

at the edge: u = ue,
∂u

∂y
= 0,

∂2u

∂y2
= 0;

together with the Von Kármán integral equation.

How fine this works will be shown with an even further simplified variant, in which only
a 2◦-degree polynomial is used

u

ue
= a+ bη + cη2, η = y/δ(x).

The coefficients follow from

at the surface: u = 0; at the edge: u = ue and
∂u

∂y
= 0;

resulting in
u

ue
= 2

y

δ
−
(y
δ

)2
, y ≤ δ.

By applying their definition, we find

cf ≡
µ

1
2ρu

2
e

∂u

∂y

∣∣∣∣
y=0

= 4
ν

ueδ
and θ ≡

∫ δ

0

u

ue

(
1− u

ue

)
dy = · · · = 2

15
δ.

Substitution hereof in the Von Kármán equation (3.3) yields

2

15

dδ

dx
=

2ν

ueδ
with the solution δ2 = 30

νx

ue
.

It follows that
cf = 0.73 Re−1/2x and θ = 0.73xRe−1/2x .

The exact Blasius values differ less than 10%: the coefficient 0.73 should have been 0.664 (see
(1.41) and (1.42)). One can imagine that use of a third- or fourth-order polynomial, which
does require a bit more calculus, brings even better results (e.g. Kuethe & Schetzer 1950,
Cebeci & Bradshaw 1977).
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In the past - turbulent

The shape of turbulent velocity profile is quite different from a polynomial shape. Instead, for
turbulent flow the velocity profile of Coles (2.6) are used. The three unknowns uτ , δ and Π
follow from (2.7), the Von Kármán momentum integral equation (3.3) and the energy integral
equation (3.5).

The above methods perform not too bad for attached (Dutch: aanliggend) flow, but for
separated (Dutch: losgelaten) flow the assumed velocity profiles (Pohlhausen’s polynomial or
Coles’ profile) are not suited: they simply do not have the right kind of shape. Therefore,
nowadays other methods are being used.

Today – laminar

For laminar flow a method is treated which performs quite well for separated flow. It is
based on velocity profiles from the Falkner–Skan equation. This equation describes a family
of solutions with one free parameter β. This family will be denoted by fβ. The horizontal
velocity is given by

u

ue
= f ′β(η) with η = y/L(x).

The idea now is to consider β and the length scale L as two unknown functions of x, as in

u

ue
= f ′β(x) (y/L(x)) . (3.6)

From this velocity profile the δ∗, θ, cf (and other quantities) can be expressed in terms of β(x)
and L(x). Remains to find two equations for these two quantities. Hereto the Von Kármán
momentum integral equation (3.3) and the energy integral equation (3.5) are selected.

Today – turbulent

Nowadays, the turbulent approach is no longer based on profile families. With more global
considerations it is tried to derive some relations between the quantities θ, δ∗ and cf , such
that together with the momentum integral equation sufficient relations are available.

A much-used method is the entrainment method of Head (1958), or refinements hereof.
It is based on the following idea. Let δ(x) be the thickness of the boundary layer, then the
mass transport is given by

Q(x) =

∫ δ(x)

0
udy. (3.7)

This quantity does not have to be constant, but usually increases significantly. An increase
of Q has to be compensated by flow entering the boundary layer from outside. This flow

E = dQ/dx

is called entrainment velocity (Dutch literally: meeneemsnelheid).
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Comparing (3.7) with the definition of the displacement thickness we find

δ∗ = δ −Q/ue.

Hence

E =
d

dx
ue(δ − δ∗) ≡

d

dx
(ueθH1), (3.8)

where we have introduced

H1 ≡
δ − δ∗

θ
=
δ

θ
−H. (3.9)

With much entrained air, the behaviour of the boundary layer is highly influenced by it.
Head’s idea is that properties of the entrained air are quite relevant for the global behaviour
of the boundary layer. His first assumption is that the non-dimensional entrainment velocity
E/ue only depends on H1. Based on several experiments, which are indicated in the left-hand
graph below, the following relation was proposed (also indicated)

1

ue

d

dx
(ueθH1) =

E

ue
= 0.0306 (H1 − 3.0)−0.6169. (3.10)

The discrepancies between the experimental data and the above approximation do not really
justify the amount of digits given, but in practice the original above formula is used.
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The second step is that Head assumes that H1 can be expressed as a function of only
the shape factor H = δ∗/θ. Head’s original experimental data and his fit are shown in the
right-hand graph above. Note that his data only cover the range H ≤ 3, yet they do tend to
indicate a minimum in the H-H1 relation. In the 1980’s, more experiments have been carried
out, and for this relation a number of variants have been proposed, some of them are shown
graphically in (3.11). Indeed, the H-H1 relation appears to show a minimum. Further anal-
ysis of the experimental data suggests that this minimum corresponds with the point of flow
separation. In the next subsection we will demonstrate the dramatic impact of this minimum.

(3.11)

Finally, a relation for cf is required. In the original formulation of Head (1958) this is the
Ludwig-Tillman formula

cf = 0.246× 10−0.678HRe−0.268θ (3.12)

with Reθ = ueθ/ν.

The equations (3.10)-(3.12) + the Von Kármán equation (3.3) yield 4 equations for 4
unknowns: θ, H, H1 and cf .

Relation (3.12) does not allow for negative values of cf , hence it is not very useful for
separated flow. Therefore, in later years, this relation has been replaced by more complicated
expressions, for example by Green (1972). Also (3.10) has been refined over the years. Chap-
ter 5 from Bradshaw (1976) gives more information.

It should be realized that it has taken quite some trial-and-error effort and considerable
insight to come up with combinations of parameters that appear to be more or less universal
for boundary layers. This shows the craftmanship of the pioneers of applied fluid mechanics.
Subsequently, it is quite remarkable that such a ‘crude’ engineering approach yields surpris-
ingly good results for attached flow; even a limited amount of flow separation can be allowed.
Navier–Stokes still has a hard time improving this approach (see the airfoil example at the
end of Chapter 2).
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3.3 Problems near flow separation

When the pressure gradient is positive, hence due/dx negative, then the boundary layer
decelerates. Forgetting ∂u/∂y and ∂2u/∂y2 for the moment, the boundary-layer equation
reduces to

u
∂u

∂x
= −1

ρ

∂p

∂x
.

The degree in which p increases is the same everywhere in the flow. Inside the boundary
layer, where u is small, this has more effect than in its outer regions. After experiencing some
unfavorable (positive) pressure gradient, negative velocities will appear in the boundary layer
(backflow). The wall streamline has separated from the wall.

The above system of equations starts to misbehave itself, which can be demonstrated by
taking apart two equations, (3.8) and the Von Kármán equation. These are first reordered to

Von Kármán:
dθ

dx
= 1

2cf −
θ

ue
(2 +H)

due
dx

Entrainment: H1
dθ

dx
+ θ

dH1

dx
=

E

ue
− θH1

ue

due
dx

The other relations are of algebraic nature. The above relations form two differential equa-
tions from which θ and H1 can be solved; the algebraic equations provide the other quantities.
But now watch figure (3.11). The relation H − H1 shows a minimum, hence not for every
value H1 a value for H can be found! In practice, this minimum is found to correspond with
a point of flow separation (Dutch: loslaatpunt).

Also the laminar approach breaks down. This is because not for all β a solution of the
Falkner–Skan equation exists. The limiting value β = −0.1988 · · · corresponds with separating
flow: f ′′(0) = 0 (see §1.4).

3.4 The normal pressure gradient

In the boundary layer, in first instance the pressure is assumed constant in vertical direction.
This assumption is not longer valid when the streamlines are highly curved. To understand
this consider the inviscid part of the y-momentum equation

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
.

The slope of a streamline is given by v/u. When the streamline runs more or less parallel to
the x-axis, its curvature is approximately given by

κ =
d

dx

(v
u

)
.

Elementary calculus gives

κ =
u ∂v/∂x− v ∂u/∂x

u2
,
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and using the continuity equation, the y-momentum equation can be rewritten as

∂p

∂y
= −κρu2.

This holds for the viscous flow as well as for the inviscid external EIF (Equivalent Inviscid
Flow). Their difference satisfies

∂

∂y
(pEIF − p) = −κρ(u2EIF − u2).

At the outer edge of the boundary layer both pressures are equal. At the wall they become
different

pEIF,wall − pwall =

∫ ∞
0

κρ(u2EIF − u2) dy.

When uEIF is assumed constant, uEIF = ue, then we arrive at

pEIF,wall − pwall = κρu2e(θ + δ∗).

The figure shows the difference between the real pres-
sure and the extrapolated pressure from the external
flow (for κ > 0). As the velocity in the boundary layer
is smaller than that in the external flow, because∣∣∣∣∂p∂y

∣∣∣∣ = |κρu2| < |κρu2e| =
∣∣∣∣∂p∂y

∣∣∣∣
EIF

,

the pressure through the boundary layer is more con-
stant than the extrapolated pressure.

-
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Chapter 4

ASYMPTOTIC POINT OF VIEW

With small viscosity, the Navier–Stokes equations give rise to a singular perturbation problem.
In this type of problems the perturbation parameter multiplies the highest-order derivative.

In ‘classical’ perturbation problems, the solution can be written as a series expansion in
the small parameter. In singular perturbation problems this can be done as well, but the
domain where the problem is defined has to be divided in subdomains, in each of which other
series expansions are valid. Usually, thin layers along boundaries are being split off. Following
Prandtl, these layers are called boundary layers. The reason that along boundaries something
different happens is because by zeroing the small parameter the highest order term is removed
from the equation, and herewith also a boundary condition has to be removed. Hence, the
zeroth-order solution does not satisfy all boundary conditions of the original problem, and
this has to be repaired by adding a boundary layer.

4.1 Classical boundary-layer theory

We will reformulate our considerations from Chapter 1 in a way as is common for singular
perturbation theory. Hereto, first non-dimensional variables are introduced

x̄ =
x

L
, ȳ =

y

L
, ū =

u

U∞
, v̄ =

v

U∞
, p̄ =

p

ρU2
∞
. (4.1)

With these scalings, the Navier–Stokes equations change into

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
+

1

Re

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
,

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −∂p̄

∂ȳ
+

1

Re

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
.


(4.2)

The only difference with before is that the coefficient of the diffusion term has changed from
ν into 1/Re. We will therefore omit the overbars; the diffusion coefficient will learn whether
we are working with the non-dimensional or dimensional variables.

39
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As we saw in Chapter 1, the flow domain is divided in two parts: the boundary layer
and the external flow region. In each of these domains the solution can be written in a se-
ries expansion. It is assumed that all terms in this expansion, including their derivatives,
are bounded; if this is not the case then the expansion has to be reconsidered. Thereafter,
this expansion is substituted in the equations of motion, and terms of equal powers in the
perturbation parameter are taken together; here we use the boundedness of the terms.

In Chapter 1 we already got an impression of the behavior of the solution. We saw that
the small parameter ν plays a role through Re−1/2. Therefore, first an expansion is postulated
in integer powers of Re−1/2.

In the outer domain the asymptotic expansions become

u(x, y; Re) = uE0 (x, y) + Re−1/2uE1 (x, y) + · · · ,
v(x, y; Re) = vE0 (x, y) + Re−1/2vE1 (x, y) + · · · ,
p(x, y; Re) = pE0 (x, y) + Re−1/2pE1 (x, y) + · · · .

 (4.3)

Substitution into the Navier–Stokes equations, and grouping the most important terms (i.e.
Re0) together reveals that uE0 , vE0 and pE0 satisfy the Euler equations.

In the boundary layer first a stretched coordinate in normal direction is introduced

ỹ = Re
1
2 y. (4.4)

This coordinate is O(1) in the boundary layer. The expansions in the boundary layer become

u(x, y; Re) = uB0 (x, ỹ) + Re−1/2uB1 (x, ỹ) + · · · ,
v(x, y; Re) = Re−1/2vB0 (x, ỹ) + Re−1vB1 (x, ỹ) + · · · ,
p(x, y; Re) = pB0 (x, ỹ) + Re−1/2pB1 (x, ỹ) + · · · .

 (4.5)

Substitution in Navier–Stokes shows that the leading terms satisfy the (non-dimensional form
of the) boundary-layer equations

∂uB0
∂x

+
∂vB0
∂ỹ

= 0,

uB0
∂uB0
∂x

+ vB0
∂uB0
∂ỹ

= −∂p
B
0

∂x
+
∂2uB0
∂ỹ2

,

0 = −∂p
B
0

∂ỹ
.


(4.6)

The further terms in these expansions satisfy much more complicated equations.

After the equations, the boundary conditions have to be determined. In any case the
external flow has to match the prescribed oncoming flow. Further, the boundary-layer flow
has to satisfy the boundary conditions at the solid surface

uB0 (x, 0) = vB0 (x, 0) = 0.
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Finally, the external flow and the boundary-layer flow have to match each other. The latter
is achieved by comparing the behavior of the external flow for y ↓ 0 with the behavior of the
boundary-layer flow for ỹ →∞.

First, the main term from the outer domain can be determined with boundary condition
vE0 (x, 0) = 0. Herewith the streamwise velocity uE0 (x, 0) is fixed, as is the pressure pE0 (x, 0).
These two quantities satisfy the Euler equations giving

uE0
∂uE0
∂x

(x, 0) = −∂p
E
0

∂x
(x, 0). (4.7)

Further, the boundary layer solution has to match, leading to

lim
ỹ→∞

uB0 (x, ỹ) = uE0 (x, 0),

lim
ỹ→∞

pB0 (x, ỹ) = pE0 (x, 0).

 (4.8)

In the next step, we consider the behavior of the vertical velocity for ỹ →∞ in the boundary-
layer solution:

vB0 (x, ỹ) ∼ −ỹ d

dx
uB0 (x,∞) +

d

dx

(
δ̃∗uB0 (x,∞)

)
+ · · · ,

where

δ̃∗uB0 (x,∞) =

∫ ∞
0

[uB0 (x,∞)− uB0 (x, ỹ)] dỹ

(hence δ∗ = Re−1/2δ̃∗ + Re−1 · · ·).

Substituting this expansion in (4.5) results in

v(x, y; Re) = Re−1/2
[
−ỹ d

dx
uB0 (x,∞) +

d

dx

(
δ̃∗uB0 (x,∞)

)
+ · · ·

]
+ Re−1 · · ·

= −y d

dx
uB0 (x,∞) + · · ·

+ Re−1/2
[

d

dx

(
δ̃∗uB0 (x,∞)

)
+ · · ·

]
+ Re−1 · · ·

= −y d

dx
uE0 (x, 0) + · · ·

+ Re−1/2
[

d

dx

(
δ̃∗uE0 (x, 0)

)
+ · · ·

]
+ Re−1 · · ·

(4.9)

The right-hand side is written in terms of y instead of ỹ; it must be the expansion of (4.3) for
y → 0. The first term −y duE0 (x, 0)/dx matches the expansion of vE0 (because of the continuity
equation). The second term in this expansion has to match the term Re−1/2vE1 (x, y). This
leads to the boundary condition for the second term in the outer domain

vE1 (x, 0) =
d

dx

(
δ̃∗uE0 (x, 0)

)
. (4.10)

We knew this already from Chapter 1, but now it is clear how to proceed this systematically:
the Euler expansions are solved with given vertical velocity; the boundary layer terms follow
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through the streamwise velocity.

In principle the above process can be continued; more and more terms in the asymptotic
expansions can be computed. The general rule that holds is schematically given in the figure
below. In practice this process is stopped at a point where one is satisfied with the amount
of physics which is included in the formulation.
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4.2 Strong interaction and the triple deck

In the preceding section it was assumed that all terms and derivatives w.r.t. x, y and ỹ
remain bounded. If this is not the case the balance between the terms in the Navier–Stokes
equations is disturbed, and possibly other groups of terms are as important as those that we
have considered thus far.
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flow:

Let us have a look at the x-direction. For various reasons it can happen that the length
scale L is not a good representation for the behavior of the solution in x-direction. In each
of the four examples in the above sketch a point exists in whose vicinity the characteristic
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x-scale is determined locally and independent of the global scale L. In this neighborhood
derivatives with respect to x become more important than thus far assumed.

Let us now investigate which asymptotic structure holds in the vicinity of such a point;
we will do this for laminar flow - the preceding section also was valid for laminar flow only.

In all cases it is assumed that the oncoming flow possesses the classical boundary-layer
structure in which (4.5) holds. The velocity profile shortly before the point S to be investigated
can then be written as

u(xS , y; Re) = B′(ỹ) +O(Re−1/2), (4.11)

in which the function B(ỹ) is known (for instance a Blasius profile). This function has the
properties

ỹ ↓ 0 : B(ỹ) ∼ 1
2aỹ

2 (a = 0.332 for Blasius),

ỹ ↑ ∞ : B(ỹ) ∼ ỹ − b (b = 1.721 for Blasius).

It is assumed that the region around the point S where the classical description becomes
questionable has a width

x = O(Re−α), 0 < α < 1
2 .

The restriction α < 1
2 means that the width is larger than the boundary-layer thickness, and

that x-derivatives remain less important than y-derivatives; this simplifies the analysis. If this
assumption turns out wrong, then this will show up during the analysis. A scaled coordinate
is introduced

xα = (x− xS)Reα.

t

potential flow

6

?

6

?

6

?

O(Re−α)

O(Re−β)

O(Re−1/2)

S
-� O(Re−α)

boundary layer
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In vertical direction it is to be expected that close to the singular point something happens,
i.e. on a y-scale Re−β with β > 1

2 . In any case, next to this y-scale the oncoming thickness

y = O(Re−1/2) plays a role. Also the y-scale y = O(Re−α) will play a role as there the
x-derivatives and y-derivatives are equally large. The analysis will reveal that these three
scales suffice to describe the flow. It remains to find the special values of α and β.
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Step 1: Lower layer

In the lower layer the viscous terms have to play a role. These are to be balanced with the
convective terms.

The oncoming velocity profile, which we consider for small ỹ, is u ∼ aỹ = aRe1/2y. So
when y = O(Re−β), then u = O(Re

1
2
−β). When x = O(Re−α) we can deduce :

u
∂u

∂x
= O(Re1−2β+α) ;

1

Re

∂2u

∂y2
= O(Reβ−

1
2 ).

Balancing these two terms gives

β =
α

3
+

1

2
.

With this relation between α and β, the viscous terms are as important as the convective
terms.

The balancing pressure gradient is of the order p = O(Re−
2α
3 ), whereas the continuity

equation gives v = O(Re
α
3
− 1

2 ). As a function of

yβ = Reβy = Reβ−
1
2 ỹ :

the asymptotic expansions now become

u(x, y; Re) = Re−
α
3 UO(xα, yβ) + · · · ,

v(x, y; Re) = Re
α
3
− 1

2V O(xα, yβ) + · · · ,
p(x, y; Re) = Re−

2α
3 PO(xα, yβ) + · · · .

 (4.12)

Substitution into the Navier–Stokes equations learns that again the boundary-layer equations
describe the flow, with a pressure which is constant in vertical direction.

Along yβ = 0 the boundary conditions are UO(x, 0) = V O(x, 0) = 0.

For yβ →∞ we have

UO ∼ ayβ + aG(xα) + · · · . (4.13)

As boundary condition the coefficient of yβ is given (from the oncoming flow). Additionally
one more boundary condition is required. This can be the prescription of

PO(xα, yβ) = P (xα) (4.14)

or of G(xα). We stress that as soon as one of the variables P or G is prescribed, the other
(G or P ) is determined.

Now is the time to match the lower layer to the middle layer.
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Step 2: Middle layer

When (4.13) is rewritten in ỹ, then for ỹ ↓ 0 we find

u(x, y; Re) ∼ aỹ + Re−
α
3 aG(xα) + · · · .

This suggests that the expansions for u and v in the middle layer look like (for v use the
continuity equation)

u(x, y; Re) ∼ UM0 (xα, ỹ) + Re−
α
3 UM1 (xα, ỹ) + · · · ,

v(x, y; Re) ∼ Reα−
1
2VM

0 (xα, ỹ) + Re
2α
3
− 1

2VM
1 (xα, ỹ) + · · · .

Substitution in the Navier–Stokes equation results in the following equations for UM0 and
VM
0 :

∂UM0
∂xα

+
∂VM

0

∂ỹ
= 0, UM0

∂UM0
∂xα

+ VM
0

∂UM0
∂ỹ

= 0,

where the velocity profile of the oncoming boundary layer (4.11) induces that

UM0 (xα, ỹ)→ B′(ỹ) and VM
0 (xα, ỹ)→ 0 as xα → −∞.

On this basis it can be concluded that

UM0 = B′(ỹ) and VM
0 = 0. (4.15)

This explains that ayβ is independent of xα in (1.13).

The next terms in the expansions satisfy

∂UM1
∂xα

+
∂VM

1

∂ỹ
= 0, UM0

∂UM1
∂xα

+ UM1
∂UM0
∂xα

+ VM
0

∂UM1
∂ỹ

+ VM
1

∂UM0
∂ỹ

= 0,

with UM1 (xα, ỹ)→ 0 and VM
1 (xα, ỹ)→ 0 as xα → −∞. Substitution of (4.15) yields

B′
∂UM1
∂xα

+B′′ VM
1 = 0 =⇒ −B′ ∂V

M
1

∂ỹ
+B′′VM

1 = 0.

This is an ordinary differential equation in ỹ that can be solved analytically. It follows

VM
1 (xα, ỹ) = −G′(xα)B′(ỹ) and UM1 (xα, ỹ) = G(xα)B′′(ỹ),

in which G(xα) is the same as in (4.13). Summarizing, the expansions become

u(x, y; Re) ∼ B′(ỹ) + Re−
α
3B′′(ỹ)G(xα) + · · · , (4.16)

v(x, y; Re) ∼ −Re
2α
3
− 1

2B′(ỹ)G′(xα) + · · · . (4.17)

After substitution into the y-momentum equation, the pressure appears to be constant

p(x, y; Re) ∼ Re−
2α
3 P (xα).

This information will now be transferred to the upper layer.
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Step 3: Upper layer

In the upper layer the x- and y-dimensions are equally large. Viscous effects are not impor-
tant. The flow is a potential flow, where the equations of Laplace and Bernoulli hold.

The vertical velocity (4.17) for ỹ →∞ induces a vertical velocity −Re
2α
3
− 1

2G′(xα) in the
upper layer. According to Laplace, in the horizontal velocity this gives a contribution of the
same order of magnitude. When in the Bernoulli equation p+ 1

2(u2 + v2) = C1 we substitute
u = 1 + ũ and v = ṽ, with ũ� 1 and ṽ � 1, then we find in first approximation

p+ ũ = C2 (≡ C1 − 1
2). (4.18)

Hence also in the expansion of the pressure a term of the order Re
2α
3
− 1

2 should be present,
which apparently is related to displacement effects.

Thus matching upper and middle layer results in two kinds of pressure terms, giving the
expansion

p(x, y; Re) = Re−
2α
3 p(p)(xα, yα) + Re

2α
3
− 1

2 p(δ)(xα, yα) + · · · . (4.19)

We remark that p(p) is known as soon as P (xα) is known (Laplace holds also for p and the
boundary condition p(p)(xα, 0) = P (xα) determines the solution), and vice-versa of course.
The same holds for p(δ) and G(xα).

An overview of the above line of reasoning including the main findings is presented in the
figure below. The encircled numbering gives the order of the steps that have been taken.
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2α
3 P (xα)

yβ ↑ ∞ : u ∼ Re−
α
3 (ayβ + aG(xα) + · · ·)

⇑���2b

y = O(Re−
1
2 )
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α
3 G(xα)B′′(ỹ) + · · ·

v = −Re
2α
3 −

1
2 G′(xα)B′(ỹ) + · · ·

p = Re−
2α
3 P (xα)

ỹ ↑ ∞ : v ∼ −Re
2α
3 −

1
2 G′(xα) + · · ·

⇑���3y = O(Re−α)
u, v = O(Re

2
3α−

1
2 )

p = Re−
2α
3 p(P )(xα, yα) + Re

2
3α−

1
2 p(G)(xα, yα) + · · ·
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Hierarchy

An important remark is now that P and G are related to each other through the equations in
the lower layer. Herewith, also p(p) and p(δ) are related. In asymptotic expansions like (4.19)
first the most important terms are determined and only later the following. The two terms in
(4.19) are equally important when α = 3

8 . For α < 3
8 the term with p(p) is the most important

and it determines p(δ) via the boundary layer. This is the same pattern as sketched in §4.1.
This ordering is called the direct hierarchy between the external flow and the boundary layer.
When α > 3

8 the term with p(δ) is the most important, and it determines p(p). The ordering
has reversed: inverse hierarchy.

When, for α < 3
8 , we want to compute p(p) we have to realize that there is no mechanism

that can produce such a pressure; recall that the influence of the boundary layer is not larger
than the order of p(δ). External factors are excluded, hence ⇒ p(p) = 0 as α < 3

8 . Reasoning

in this way, the oncoming flow remains valid. However, when α = 3
8 then p(p) and p(δ) are

of a similar magnitude. The above reasoning that p(p) = 0 is no longer valid, but a coupled
description exists between the boundary layer and the external flow, in which both flow regions
together determine the solution. There is no longer a special hierarchy; this is called strong
interaction. The special three-layered region for α = 3

8 is called triple deck.
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Triple-deck equations

Summarizing our findings, the equations describing the triple deck are:

Lower layer

∂UO

∂xα
+
∂V O

∂yβ
= 0,

UO
∂UO

∂xα
+ V O ∂U

O

∂yβ
= − ∂P

∂xα
+
∂2UO

∂y2β
;

with
UO(xα, 0) = V O(xα, 0) = 0

and
UO(xα, yβ) ∼ ayβ + aG(xα), yβ →∞.

Upper layer

P (xα) =
1

π

∫ ∞
−∞

G′(ξ)

xα − ξ
dξ.

In this derivation use has been made of the linearized Bernoulli equation (4.18) and the
thin-airfoil formula

u(x) =
1

π

∫ ∞
−∞

v(ξ)

x− ξ
dξ,

which describes the solution of a potential flow for which the vertical velocity along the x-axis
(−∞,+∞) is prescribed (see PDV lecture notes - Veldman 1996).

The triple-deck equations have been formulated by Stewartson (1969) and Messiter (1970),
and solved in the mid 1970’s. The character of this system, in particular its lack of hierarchy,
has played an important role in developing calculation methods for boundary-layer flow in
the 1980’s. In Chapters 6 and 7 we will return to this issue.



Chapter 5

NUMERICAL SOLUTION
METHODS

5.1 Parabolic character

We reformulate the boundary-layer equation (4.6) by substituting (4.7)+(4.8). At the same
time we omit the 0-s and B-s:

∂u

∂x
+
∂v

∂y
= 0, (5.1)

u
∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+
∂2u

∂y2
, (5.2)

with boundary conditions

at y = 0 : u = v = 0, (5.3a)

when y →∞ : u→ ue. (5.3b)

These equations have a parabolic character, where the x-direction is time-like (see §1.2).

The parabolic character can also be shown by means of a transformation of the y-
coordinate

ψ(x, y) =

∫ y

0
u(x, ȳ) dȳ.

Check that ψ(x, y) is the streamfunction, hence u = ∂ψ/∂y and v = −∂ψ/∂x. Now automat-
ically (5.1) is satisfied. We introduce a coordinate transformation (x, y)→ (ξ, ψ), with x = ξ
(Von Mises transformation). The derivatives transform like

∂

∂x
=

∂

∂ξ
+
∂ψ

∂x

∂

∂ψ
=

∂

∂ξ
− v ∂

∂ψ
,

∂

∂y
=
∂ψ

∂y

∂

∂ψ
= u

∂

∂ψ
.

After substitution into (5.2) we obtain

u
∂u

∂ξ
− ue

due
dξ

= u
∂

∂ψ

(
u
∂u

∂ψ

)
= u

(
∂u

∂ψ

)2

+ u2
∂2u

∂ψ2
. (5.4)

49
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with boundary conditions

at ψ = 0 : u = v = 0,

for ψ →∞ : u→ ue.

This is a partial differential equation in one dependent and two independent variables. The
type is parabolic, because in ξ-direction a first-order derivative is the highest, whereas in ψ-
direction a second-order derivative appears. The ξ-direction acts as the time-like direction.

The standard example of a parabolic equation is the heat equation

∂T

∂t
= a

∂2T

∂x2
, (5.5)

where usually a > 0. Suppose that (5.5) has to solved on a strip {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}
with initial values along t = 0 and homogeneous boundary conditions (for T or ∂T/∂x) at
x = 0 and x = 1. Then

d

dt

∫ 1

0

1
2T

2 dx =

∫ 1

0
T
∂T

∂t
dx = a

∫ 1

0
T
∂2T

∂x2
dx = −a

∫ 1

0

(
∂T

∂x

)2

dx. (5.6)

The integral in the left-hand side of (5.6) is a kind of kinetic energy of the temperature T .
In mathematical terms it is an L2-norm. When a > 0 this quantity decreases in positive
time direction. This means that disturbances damp in time: in other words the analytical
solution is stable when t → ∞ (see also PDV lecture notes). Going backward in time the
solutions of this equation are unstable (t → −∞). When a changes sign (a < 0) then the
stable time direction also changes. This means that the direction of time plays an impor-
tant role. We will encounter this analytical property in the numerical solution methods (§5.3).

For the boundary-layer equation (5.1)+(5.2) or (5.4) this means that for u > 0 the so-
lution is stable for increasing x and ξ, respectively. The equation can be solved safely in a
numerical way by marching in this direction. However, when u < 0 in a (small) portion of
the computational domain, then this locally leads to an instability in the marching direction,
which can produce numerical problems. A special numerical treatment is desired, in which
locally the marching direction is reversed.

5.2 The heat equation - numerical

With the heat equation we treat some numerical solution methods for parabolic equations.
It is remarked that it is a special case (namely u = 0) of the unsteady convection-diffusion
equation treated in the CFD lecture notes (see also CFD Exercise 4).

We solve
∂T

∂t
= a

∂2T

∂x2
, t ≥ 0, 0 ≤ x ≤ 1, (5.7)

on a discrete grid

tn = n δt; xi = ih, h = 1/I.
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The term ∂2T/∂x2 is centrally discretised, while for the time derivative ∂T/∂t a number of
methods will be treated. As boundary conditions a combination of Dirichlet and Neumann
(discretised using a mirror point) is chosen

T (0, t) = 0 and
∂T

∂x
(1, t) = 0.

We will investigate when the chosen discretisation method is stable. Hereto the Fourier-
method is used and as a stability criterion we use |g(θ)| ≤ 1 for the amplification factor.
Further it is analysed whether a monotone operator (or M-matrix) is formed (i.e. ‘no wig-
gles’), defined by diagonal dominance and non-positive entries outside the diagonal (see CFD
lecture notes).

As an illustration we solve (5.7) for the initial value T (x, 0) = x, on a grid with h = 1/10
and for a = 1. For 0 ≤ t ≤ 5 the behavior of T (1, t) is shown. We abbreviate d ≡ 2aδt/h2.

Explicit

Tn+1
i − Tni −

d

2

(
Tni+1 − 2Tni + Tni−1

)
= 0. (5.8)

A monotone operator is formed if and only if 0 ≤ d ≤ 1. The amplification factor is

g(θ) = 1 + d(cos θ − 1), (5.9)

hence the scheme is stable is if and only if 0 ≤ d ≤ 1. The stability limit is quite sharp, as
can be inferred from the following two plots.

0

0.5

1

0 1 2 3 4
t

T
explicit

d = 1

-1e+07

-5e+06

0

5e+06

1e+07

0 1 2 3 4
t

T explicit
d = 1.02

Implicit with parameter ω (0 < ω ≤ 1)

Tn+1
i − Tni − ω

d

2

(
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

)
+

− (1− ω)
d

2

(
Tni+1 − 2Tni + Tni−1

)
= 0.

(5.10)
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This is a monotone operator if and only if 0 ≤ d ≤ 1

1− ω
(monitor the coefficient of Tni ).

The amplification factor is

g(θ) =
1− (1− ω)d(1− cos θ)

1 + ωd(1− cos θ)
, (5.11)

hence the scheme is stable if and only if d ≥ 0 ∧ d(1− 2ω) ≤ 1. The first requirement follows
from g ≤ 1, the second one from g ≥ −1.
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Combinations (d, ω) exist for which the scheme is stable, but for which the operator is
not monotone. In these cases wiggles can appear in the solution. In the interesting domain
1
2 ≤ ω ≤ 1 more can be said about this. The scheme is stable for all d ≥ 0. When d → ∞,
the amplification factor approaches

g(θ) ∼ −(1− ω)

ω
when θ 6= 0 (d→∞).

Apart from θ = 0, all Fourier-frequencies are treated in the same way, making this quite
visible in the solution. Errors oscillate clearly around zero, as explained next.
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When ω > 1
2 the errors damp in time, but not when ω = 1

2 (unless the boundary conditions
help a hand). Unfortunately, ω = 1

2 is a popular case, because here second-order accuracy is
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obtained (Crank-Nicholson method). For large d the wiggles are very visible: their damping
→ −1 as d → ∞. In practice the wiggles are often reduced by averaging (with ω and 1 − ω
as weight factors).
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Increasing ω at constant d
yields a better damping of
the wiggles: here ∼ −2/3
as d→∞.
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When ω = 1, for all d the
operator is monotone: no
wiggles.

B3 – three-point backward

3

2
Tn+1
i − 2Tni +

1

2
Tn−1i − d

2

(
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

)
= 0. (5.12)

This is a second-order scheme in space and time. The operator is never monotone, but when
d ≥ 0 only the term 1

2T
n−1
i is stubborn. The amplification factor satisfies[

3
2 + d(1− cos θ)

]
g2 − 2g + 1

2 = 0,
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whence

g(θ) =
2±

√
1− 2d(1− cos θ)

3 + 2d(1− cos θ)
.

This scheme is stable if and only if d ≥ 0. When d → ∞ the amplification factor g(θ) → 0.
This strong damping for large d can be stronger than in the analytical problem; so watch out
with accuracy for large δt.
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Remark In the above computations the first time step t = δt is calculated with the implicit
method for ω = 1.0.

Keller-box

In the ‘box’ method of Keller, first (5.7) is written as a system

∂T

∂t
=
∂S

∂x
, S = a

∂T

∂x
. (5.13)

This system is next discretised in the center of the ‘box’ with corners (xi, t
n), (xi, t

n+1),
(xi+1, t

n) and (xi+1, t
n+1)

1

2

(
Tn+1
i+1 − Tni+1

δt
+
Tn+1
i − Tni

δt

)
=

1

2

(
Sn+1
i+1 − S

n+1
i

h
+
Sni+1 − Sni

h

)
,

1

2

(
Sn+1
i+1 + Sn+1

i

)
= a

Tn+1
i+1 − T

n+1
i

h
.

In this form the method is simply applicable on grids with non-equidistant grid points. Fur-
ther, the method is second-order accurate in space and time.

To simplify the comparison with the other methods, we eliminate the S from the above
system discretised around xi+ 1

2
and around xi− 1

2
. Then we obtain

1
4

(
Tn+1
i+1 + 2Tn+1

i + Tn+1
i−1

)
− 1

4

(
Tni+1 + 2Tni + Tni−1

)
−

d
4

(
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

)
− d

4

(
Tni+1 − 2Tni + Tni−1

)
= 0.

(5.14)



5.3. THE BOUNDARY-LAYER EQUATIONS – NUMERICAL 55

We recognize that the ∂2/∂x2-term is treated as in (5.10) with ω = 1
2 . The ∂/∂t-term con-

tains averages over a number of x-levels. Through all this averaging (5.14) is not monotone,
unless d = 1. For d < 1 the terms with Tn+1

i±1 have the wrong sign, and for d > 1 the term Tni
has a wrong coefficient.
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The amplification factor for Fourier components reads

g(θ) =
1 + cos θ − d(1− cos θ)

1 + cos θ + d(1− cos θ)
,

hence the method is stable if and only if d ≥ 0. When d → ∞, then g(θ) → −1, as for
the Crank-Nicholson method, hence the Keller-box method is prone to wiggles. The example
shows that even for d = 10 (δt = 0.05) the wiggles are clearly present.

Conclusions

Stability When d > 0 the contributions to the coefficient of Tn+1
i (the diagonal) from

∂2T/∂x2 and ∂T/∂t amplify each other; for d < 0 they do not. This explains why d = 0
separates the stable domain from the unstable one. This leads to the following ‘rule of thumb’,
which can be useful when it is unclear whether a certain term should be discretised upwind
or downwind:

Make sure in any discretisation that, in the left-hand side, the contributions to the
diagonal amplify each other.

Accuracy The explicit method with δt = 0.005 and the other methods with δt = 0.05
(apart from the ‘box’-method) are quite comparable when graphical accuracy is requested.
The explicit method has to compute 10× as many time steps, but one individual time step is
much cheaper. Especially on parallel and vector computers this method is popular.

5.3 The boundary-layer equations – numerical

The boundary-layer equations (5.1)–(5.3b) have to be solved on a domain 0 ≤ x ≤ X, and in
principle for 0 ≤ y <∞. In practice the edge is placed at a finite distance: y = ye. Herewith
an error is introduced - this error depends on the rate with which u approaches ue when
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y →∞.

In many cases this happens in an exponential way. For the similarity solutions of §1.4 this
can be proven. This allows to choose ye rather small: a few times δ∗ (say 5δ∗) suffices for
an attached boundary layer. In wakes the computational domain should be thicker. Another
choice for ye, useful for boundary layers and wakes, is to base ye on δ95: the value of y for
which u = 0.95 ue. A useful choice is ye = 1.5 δ95. In wakes δ95 is based on ue − umin, where
umin is the minimum value of u.

-

0.95ue ue

y

δ95

u

-

6
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Near the surface velocity profiles in y-direction
show larger variations than near the edge of the
boundary layer; the more so for turbulent boundary
layers. It is therefore appropriate to cover the com-
putational domain 0 ≤ y ≤ ye with a non-uniform
grid, with finer meshes close to the surface. It is
useful to transform the computational domain to a
constant thickness through a scaling: η = y/ye; this
scaling depends on x. When ye is based on δ∗ or δ95,
this scaling is not known beforehand. But when an
a priory engineering estimate is not satisfactory, it
is possible to have ye iterating within the iteration
process that is applied anyway to solve the equations
per boundary-layer station.

The computation of a boundary-layer solution can be started with a prescribed initial
profile. As the boundary-layer equations are solved, and not full Navier–Stokes, only the
horizontal velocity component u has to be given (compare CFD lecture notes §2.7). Often a
similarity solution can be used. For example, with a sharp leading edge one can start with the
Falkner–Skan solution for β = 0. For a blunt nose, in the stagnation point the Falkner–Skan
solution for β = 1 can be used.

In the discretisation we make use of the parabolic character of the equations. In this
way the x- and y-direction have a different character. In the x-direction information in the
analytical problem is transferred in positive direction (increasing x) when u > 0. This is
reflected in the difference method by a backward discretisation. The y-coordinate does not
possess a special direction – derivatives w.r.t. y are centrally discretised. For the positioning
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of the variables in the grid this, in a natural way, leads to the following sketch; here the
x-direction is modified as compared to the MAC positioning (see CFD lecture notes §2.2).

For the discretisation in x-direction implicit methods are preferred because of their better
stability. Tune the grid size to the behavior of the solution: small cells when the variation is
large, large cells when the solution is almost constant. My personal favorite is the B3-method
(or the B2-method: implicit with ω = 1). Popular methods like Crank-Nicholson or Keller-
box are very sensitive to wiggles, and in difficult situations (for example separated flow) they
lead to large numerical problems.

������������
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The u-variable (and also p) is defined in grid points (i, j+ 1
2), the v-variable in (i, j). The

continuity equation and the momentum equation both are discretised in (i, j + 1
2). Above

some possible difference molecules are shown. The boundary condition u = 0 at y = 0 is
treated with a mirror point. When the surface corresponds with j = 1 and the edge of the
boundary layer with j = N + 1

2 , per boundary-layer station we have N + 1 unknowns u and
N unknowns v. To compute these, 3 boundary conditions and 2(N−1) equations are available.

When in some points u < 0, the above discretisation weakens the diagonal in the mo-
mentum equation. Often these negative velocities are quite small in absolute value. An
approximation u = 0 is reasonable. Then the term u ∂u/∂x does not play a role anymore.
This is the FLARE approximation (after Flügge-Lotz and Reyhner 1968). An alternative
where nothing is approximated, is reversing the discretisation direction of u ∂u/∂x. In this
way stations downstream appear in the difference molecule. The solution can no longer be
obtained by one single marching sweep from x = 0 to x = X, but one has to iterate with
multiple sweeps.

The non-linearity of the momentum equation can be treated as in the CFD lecture notes
§2.6, where x now plays the role of time. Hence linearisation around the previous x-station,
or around the current x-station.

An upwind treatment of v ∂u/∂y is seldom required, as the grid size in y-direction usually
is sufficiently small; check the mesh Péclet number! (Hint: Recognize that both the vertical
velocity v and the vertical mesh size δy scale as

√
ν).
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After the discretisation, the continuity equation and the momentum equation can (alter-
natingly) be put together in one large system, such that a 2 × 2 block structure is formed.
This system is solved iteratively, due the non-linearity, until the solution at the boundary-
layer station is obtained. Thereafter the next downstream point can be treated.

Remark 1 In the past the continuity equation and the momentum equation were treated
alternatingly: continuity equation → new v, momentum equation → new u, continuity equa-
tion → new v, etcetera. This iterative process can diverge; avoiding this process is better.

Remark 2 Traditionally the variables u and v are positioned in the same point, and not
staggered half a mesh size as above. As the pressure is prescribed, there is no danger for
pressure oscillations as in solving the Navier–Stokes equations (see CFD lecture notes §2.2).
However, when the boundary-layer equations are extended to the parabolised Navier–Stokes
equations (see §8.1), in which ∂p/∂y is unknown, this danger does exist. With the above
indicated discretisation this extension proceeds without any problems. Also the term ∂u/∂x
from the continuity equation does not have to be averaged over two y-values, which is required
in the traditional approach.



Chapter 6

FLOW SEPARATION

6.1 Something goes wrong

As long as everywhere in the boundary layer u > 0, no problems occur when numeri-
cally solving the boundary-layer equations (§5.1-5.3). Also analytically everything is fine.
Nickel (1958) has proven the uniqueness of a possible solution of (5.1)-(5.3b) for which (i)
u(x, y) > 0 (y > 0); (ii) uy(x, 0) > 0 (y ≥ 0); (iii) uyy(x, y) < C (y ≥ 0). But no statement
is made on solutions that do not satisfy these criteria. Further, Oleinik (1963) has proven
the existence of a solution for situations where due/dx > 0 (i.e. for an accelerating boundary
layer). Walter (1976) provides an entrance to the theoretical literature.

However, when u < 0 somewhere in the boundary layer, currently no theory on existence
or uniqueness is available. Based on numerical experiences it is suspected that there does not
always exist a solution; we return to this issue later.

s
**

y
1

1

-u

flow separation

Calculations (analytical/numerical) of solutions of
the boundary-layer equations run into problems the mo-
ment that somewhere at the x-station considered the
velocity wants to become negative (u < 0). Usually
this is next to the surface, such that ∂u/∂y|wall = 0
indicates the start of the problems. This situation cor-
responds with the onset of backward flow, where the
wall separates from the surface. The point where the
wall shear stress ∂u/∂y vanishes, is called the point of
flow separation (Dutch: loslaatpunt). The problems in
the computation manifest themselves in a very rapid in-
crease of δ∗, usually followed by a complete breakdown
of the computational process (Goldstein singularity).

The reason for these problems has been unclear for a long time (more than half a century).
Possible causes could be:

• The rapid increase of δ∗ could indicate a much smaller x-length scale than was assumed
in the derivation of the boundary-layer equations. When ∂/∂x terms are getting impor-
tant, the may no longer be neglected w.r.t. the ∂/∂y terms. In short: the boundary-layer

59
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model may no longer be valid near flow separation.

• In points where u = 0 the parabolic character of the equation changes direction. Is this
treated correctly? Is it allowed to calculate from upstream towards downstream? In
short: the numerical method may not be sound.
One has to realize that the computational equipment and the knowledge of numerical
algorithms available in the 1920’s until 1950’s were not that advanced that quickly
another model could be tried.

• Is the prescription of an arbitrary ue correct; maybe it has to satisfy certain properties
before a solutions exists (Goldstein 1948)?
Remark Compare the Falkner–Skan equation (§1.4) where the condition β ≥ β∗ through
(1.39) leads to a condition on ue.

Only in the second half of the 1960’s some light was shed on this matter. In 1966, Catherall
& Mangler changed the boundary condition at ye: they prescribed δ∗ instead of ue. In this
way it appeared possible to compute through the separation point, without a breakdown of the
calculations. In 1969 (Stewartson) and 1972 (Sychev) a new asymptotic theory was presented.
This theory made it clear that ue may not be prescribed arbitrarily, but the boundary-layer
equations are still valid: triple-deck theory. In §4.2 we have encountered this theory already.

6.2 Asymptotic theory and numerical approach

Now a summary follows of the asymptotic description given in §4.2 of a laminar boundary
layer in the vicinity of a point where ‘classical’ a singularity occurs (as in separation, near
shocks and at trailing edges), and the consequences this has for the development of numerical
solution methods.
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-� O(Re−3/8)

‘classical’
boundary layer

���������������������������� ����������������������

Around the singularity a new length scale
in x-direction appears: Re−3/8L. In vertical
direction, this area is divided in three layers.
In the lower layer, with thickness Re−5/8L, the
boundary layer reacts on the singular point.
This generates a displacement effect that is
passed to the external flow via the middle
layer. In the lower and the middle layer the
boundary-layer equations are still valid as a
first approximation. The middle layer is rela-
tively unimportant, and is present because the
oncoming flow has this thickness. The upper

layer, with thickness Re−3/8L, is part of the external flow where the inviscid equations are
valid.

For a numerical method this implies that in the vicinity of singular points finer grid cells
(scale Re−3/8L in x-direction and Re−5/8L in y-direction) have to be used. For the mathe-
matical model this has no consequences, as the boundary-layer equations are still sufficient.
Remark In turbulent boundary layers the situation is somewhat different, but that is not
relevant for the global message.
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Also something can be learned about the iteration process with which the viscous and
inviscid equations should be solved. The hierarchy between boundary layer and external flow
plays the main role, as discussed in §4.2.

In §4.1 the external flow gives the ue and the corresponding pressure. These are passed to
the boundary layer, and via the displacement effect this results a correction to the pressure
in the external flow. This correction is the Re−1/2 term in the asymptotic expansion (4.3).
Viewing this process as an iterative process, then an amplification factor Re−1/2 appears. For
sufficiently large Re this converges (see §7.4).

However, in the triple deck the situation is different. The pressure correction, just men-
tioned, is no longer O(Re−1/2) smaller than the original pressure, but instead equally large
(see §4.2). In fact this is the criterion that determines the scale Re−3/8. In terms of iteration
processes an amplification factor proportional to Re0 appears, which makes convergence un-
certain. On even smaller x-length scales this amplification factor is larger than O(Re0), and
even grows with Re!

In physical terms, in the situation of §4.1 the external flow is dominant. The interaction
between boundary layer and external flow is called weak. In the triple deck, boundary layer
and external flow are equally important (no hierarchy). The interaction here is called strong.
In a (numerical) iteration process this lack of hierarchy has to show up in order not to risk
divergence. We return to this issue in Chapter 7.

The adjacent pressure distribution, corres-
ponding with flow along a flat plate with
indentation (see above), shows how much
an external pressure distribution is influ-
enced by a separated boundary layer.



62 CHAPTER 6. FLOW SEPARATION

6.3 A numerical experiment

In this section a numerical experiment in the vicinity of a separation point is described, where
the problems are clearly recognizable (Veldman 1980). In this experiment a computation has
been carried out with the boundary-layer equations for prescribed δ∗. The latter has been
chosen such that the flow features a separation bubble. Herewith in the station i close to
separation δ∗i has been varied. In the other stations all quantities were kept fixed. We have
monitored how the solution for uei changes with δ∗i . The figure below shows the result.

t
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6uei
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The graph of uei as a function of δ∗ appears to possess a minimum. In this minimum
∂u/∂y(x, 0) ≈ 0, which corresponds with a point of flow separation. The graph shows that
no values for δ∗i exist for which uei < uemin . Hence, when uei is prescribed within this range,
no solution for δ∗i is possible. This explains the difficulties that computations with prescribed
ue encounter in separation points. Goldstein’s 1948 vision turned right!

To determine the boundary-layer solution a boundary condition is required. We saw that
prescribing ue will not always work, but prescribing δ∗ does work. These two possibilities can
be generalized to the prescription of a linear combination

uei + ciδ
∗
i = RLi. (6.1)

Combining boundary layer and boundary condition means in the above plot that an intersec-
tion point has to exist of the indicated curve with the line (6.1). This will only work well for
certain choices of ci. We give some possible situations:
– When ci > 0 it will not work when the line is lying too low.
– When ci < 0 and ci not too close to 0 it will work.
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The classical situation, prescription of ue, corresponds with ci = 0; we have to stay somewhat
away from that situation. Therefore the slope of the line (6.1) should not be too small, but
positive.

This analysis shows that we have to look for a relation like (6.1) with the ‘correct’ sign
for ci. Just like ue, this relation has to be provided by the external flow. In Chapter 7 we
will elaborate on this.
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Chapter 7

COUPLING OF BOUNDARY
LAYER AND EXTERNAL FLOW

7.1 Coupling algorithms

The flow field has been divided in two parts: boundary layer and external flow. This formula-
tion falls in the general category of domain decompoistion. The equations of motion in each
of the subdomains provide a relation between the velocity along the edge of the boundary
layer (ue) and the displacement thickness (δ∗). We will denote these relations in a symbolic
way as follows:

external flow ue = E[δ∗], (7.1)

boundary-layer flow ue = B[δ∗]. (7.2)

Remark E denotes ‘external’; B denotes ‘boundary layer’.

It is assumed that, also after discretisation, (7.1)+(7.2) do possess a (unique) solution.
The form in which (7.2) is written has been deliberately chosen as for any given δ∗ a ue can
be found, but the reverse does not always hold (Chapter 6).

The asymptotic scheme from §4.1 directly leads to an iteration method for solving (7.1)+(7.2){
u
(n)
e = E[δ∗(n−1)],

δ∗(n) = B−1[u
(n)
e ].

(7.3)

This is the classical or direct method. Near separation the problems mentioned before occur
as B−1 does not always exist. These problems can be avoided by reversing the iteration
process, leading to the so-called inverse method{

δ∗(n) = E−1[u
(n−1)
e ],

u
(n)
e = B[δ∗(n)].

(7.4)

The operator E−1 does not give rise to problems in practice. However, we will see in §7.4
that this process converges slowly.
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Mixtures of (7.3) + (7.4) are also possible. An example is the semi-inverse method
uEe = E[δ∗(n−1)], (direct)

uBe = B[δ∗(n−1)], (inverse)

δ∗(n) = δ∗(n−1) + ω
(
uBe − uEe

) (7.5)

with ω a suitably chosen relaxation parameter. The methods of Le Balleur (1978) and Carter
(1981) have this structure.

Finally, one can also try to avoid an iterative treatment of (7.1) + (7.2) as much as
possible. We have encountered this philosophy several times already. In §7.4 an example is
presented. It is based on the existence of an approximation I of the external operator E that
is so simple that it can be used as a boundary condition for the boundary-layer equation.
We call I the interaction law, as it describes an approximation of the interaction between
boundary layer flow and external flow. The following iterative process is created{

u
(n)
e − I[δ∗(n)] = E[δ∗(n−1)]− I[δ∗(n−1)]

u
(n)
e −B[δ∗(n)] = 0

(7.6)

This method is called quasi-simultaneous, because the approximation I of E is solved simul-
taneously with B. It is remarked that the converged result does not depend on the choice of
I; on the other side, I is of crucial influence on the rate of convergence of the process (7.6).
Remark In numerical linear algebra terminology, I is a preconditioner for E.
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We now show two examples of the convergence of the quasi-simultaneous method (7.6).
These examples correspond with subsonic and transonic flow, respectively, past an RAE 2822
profile. The corresponding pressure distributions are shown below.
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The external flow (E) is modeled with compress-
ible potential-flow theory. The boundary layer (B) is
described with compressible boundary-layer theory
(in these lecture notes the incompressible version is
presented). The interaction law (I) is chosen based
on thin-airfoil theory (see §7.2). The rate of conver-
gence of the quasi-simultaneous method depends on
the difference between E and I. As I is based on sub-
sonic theory, the convergence rate for the subsonic
case is larger than for the transonic case. Important
quantities like lift and drag converge within 1% in 4
and 5 iterations, respectively (Veldman et al. 1988).

7.2 Formulation of a model problem

To study the iterative behaviour of the presented coupling algorithms theoretically, a model
problem will be defined. In this model problem a simple model for the external flow is used:
the influence of the boundary layer v(x, 0) is modeled with thin-airfoil theory.

u u
x0 xN+1

6
6 6

6 6

Consider the x-axis where between x0 and xN+1 a vertical velocity is given v(x, 0). For
x < x0 and x > xN+1 we demand v(x, 0) ≡ 0. A potential flow that satisfies these boundary
condition possesses along the x-axis a horizontal velocity given by (apart from a constant)

u(x, 0) =
1

π
=

∫ xN+1

x0

v(ξ, 0)

x− ξ
dξ. (7.7)

A derivation hereof is based on complex function theory, and can proceed in terms of Plemelj
formulas, Green’s functions or source distributions (see PDV lecture notes - Veldman 1996).
In thin-airfoil theory, the interval [x0, xN+1] represents a flattened airfoil profile.
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When writing the value ue from the external flow as

ue(x) = ue0(x) + ueδ∗ (x),

where ue0 is the solution past the ‘clean’ profile and ueδ∗ represents the effect of the boundary
layer, then this yields a model

ue(x) = ue0(x) +
1

π
=

∫ xN+1

x0

v(ξ, 0)

x− ξ
dξ, (7.8)

where according to (1.26)

v(ξ, 0) =
d

dξ
(ueδ

∗). (7.9)

To simplify the analysis of the model problem even further we approximate the ue appearing
in (7.9) by the oncoming velocity U∞. For the essence of the analysis of the coupling between
boundary layer and external flow this is of no influence. In the model problem the external
flow is chosen as

ue(x) = ue0(x) +
U∞
π

=

∫ xN+1

x0

dδ∗/dξ

x− ξ
dξ. (7.10)

This equation will be combined with a model for the boundary-layer flow. Such a model
is derived from a linearisation of the relation per boundary-layer station given in §6.3. We
linearize the curve as

ue(x) + d(x)δ∗(x) = r`(x), (7.11)

representing the tangent. Thus di = −duei/dδ
∗
i . The plot on page 62 shows that di > 0 for

attached flow, whereas di < 0 for separated flow. (Thus far there is no mathematical proof
of this property.)

The right-hand side and d(x) contain the information of neighboring boundary-layer sta-
tions. These are kept fixed, i.e. the influence of these has been removed from the model for
simplicity reasons. This influence could be stabilizing or destabilizing – the model problem
does not make statements about this.

7.3 Discretisation of the external flow

For the discretisation of the integral in (7.10) the segment [x0, xN+1] is divided in N + 1
intervals [xj , xj+1]( j = 0, · · · , N), of length h. The integral in (7.10) will be evaluated in the
points x = xi

Ji ≡=

∫ xN+1

x0

dδ∗/dξ

xi − ξ
dξ.

To evaluate this integral, on the interval around xi, i.e. [xi−1, xi+1], δ
∗ is approximated by

a quadratic function; this because of the Cauchy principal value. On the other intervals a
linear approximation of δ∗ suffices. Hereafter, the integral is calculated exact.

Ji =

N∑
j = 0

j 6= i− 1, i

∫ xj+1

xj

dδ∗

dξ

∣∣∣∣
j+ 1

2

dξ

xi − ξ
+ =

∫ xi+1

xi−1

{
dδ∗

dξ

∣∣∣∣
i

+ (ξ − xi)
d2δ∗

dξ2

∣∣∣∣
i

}
dξ

xi − ξ
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=
N∑
j = 0

j 6= i− 1, i

{
dδ∗

dξ

∣∣∣∣
j+ 1

2

ln

∣∣∣∣ xi − xjxi − xj+1

∣∣∣∣
}

+
dδ∗

dξ

∣∣∣∣
i

ln

∣∣∣∣xi − xi−1xi − xi+1

∣∣∣∣− d2δ∗

dξ2

∣∣∣∣
i

(xi+1 − xi−1).

The derivatives of δ∗ are discretised centrally. On the equidistant grid we obtain

Ji =

N∑
j = 0

j 6= i− 1, i

{
1

h
(δ∗j+1 − δ∗j ) ln

∣∣∣∣ i− j
i− j − 1

∣∣∣∣} − 2

h
(δ∗i+1 − 2δ∗i + δ∗i−1), i = 1, · · · , N.

Here it is assumed that δ∗(x0) and δ∗(xN+1) are known (upstream and downstream boundary
conditions). Finally, we rearrange the contribution of the displacement effects to (7.10) as

U∞
π

=

∫ xN+1

x0

dδ∗/dξ

x− ξ
dξ =

U∞
π
Ji ≡ αi0δ

∗
0 +

N∑
j=1

αijδ
∗
j + αi,N+1δ

∗
N+1, (7.12)

in which

αii =
4U∞
πh

, (i = 1, · · · , N); αij =
U∞
πh

ln

∣∣∣∣1− 1

(i− j)2

∣∣∣∣ , (j 6= 0, i− 1, i, i+ 1, N + 1);

αi,i−1 = −U∞
πh

(2− ln 2), (i 6= 1); αi,i+1 = −U∞
πh

(2− ln 2), (i 6= N);

α10 = −2U∞
πh

; αi0 = −U∞
πh

ln
i

i− 1
, (i 6= 1);

αi,N+1 = −U∞
πh

ln
N + 1− i
N − i

, (i 6= N); αN,N+1 = −2U∞
πh

.

Hence

αii > 0, αij = αji < 0 (i 6= j) and

N+1∑
j=0

αij = 0. (7.13)

The last property simply follows from: δ∗ = constant ⇒ dδ∗/dξ = 0 ⇒ J = 0 which also
holds discrete for δ∗j ≡ 1. From (7.13) it is concluded that the matrix (αij)

N
i,j=1 is a symmetric

(monotone) M-matrix and hence positive definite (see Appendix 1).

Next we substitute the discretisation (7.12) in (7.10), and move the contribution from δ∗i
to the left-hand side (with αii as given above)

uei −
4U∞
πh

δ∗i = ue0i +
N+1∑
j = 0
j 6= i

αijδ
∗
j . (7.14)

This equation is of the type (6.1) with ci = −4U∞
πh , hence ci < 0. This is precisely the sign that

we desperately wanted. Starting from a good approximation of the physics, we are rewarded
with good numerical properties!
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7.4 Numerical analysis of the model problem

The model problem can be written as

ue −Hδ∗ = ue0 + αi,0δ
∗
0 + αi,N+1δ

∗
N+1, (7.15)

ue + Re1/2Dδ∗ = r`, (7.16)

with ue = (ue1 , · · · , ueN ); similar for δ∗. Further

H = (αij)
N
i,j=1 and D = diag (Re−1/2d(xi)). (7.17)

As δ∗ is proportional to Re−1/2, d scales with Re+1/2 (see (7.11)) and because of that D has
become independent of Re (in first approximation). This is the reason to introduce a factor
Re1/2 in (7.16).

The system (7.15)+(7.16) is a special case of (7.1)+(7.2). It is used to test the iterative
techniques from §7.1. Hereto we may restrict ourselves to the homogeneous problem{

ue −H δ∗ = 0,

ue + Re1/2D δ∗ = 0.
(7.18)

During the analysis we will frequently encounter the matrix

Q ≡ H + Re1/2D. (7.19)

It is positive definite when the flow is attached everywhere, as then di > 0. In separation
di is (slightly) negative, and reduces the diagonal of Q a little bit as compared with that of
H. Fortunately, H is strict diagonally dominant and ‘with some margin’ positive definite. A
little reduction of the diagonal is allowed, before Q loses its positive-definiteness.

We first treat a lemma on Jacobi relaxation (see also the CFD lecture notes).

Lemma: Consider the iteration process x(n) = M x(n−1). Jacobi relaxation can be written
as (U is the unit matrix)

x(n) = ωMx(n−1) + (1− ω)U x(n−1).

There exists an ω > 0 for which this process converges if and only if all eigenvalues λ of M
satisfy <e λ < 1.

HH
HH

HH
HH

HH
HH

H×
λ

×
µ

0 1

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

<e λ = 1

HHHj

HH
HY ω|λ− 1|

Proof: The eigenvalues µ of the Jacobi iteration
matrix ωM + (1− ω)U satisfy

µ = ωλ+ (1− ω) = 1 + ω(λ− 1),

Reducing ω they are attracted towards 1, and
should end up inside the unit circle. When <e
λ > 1 this is not possible.

Remark When all eigenvalues of M lie to the right
of <e λ = 1, then negative ω’s could be used.
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The direct method

The direct method (7.3) applied to (7.18) gives{
u
(n)
e = Hδ∗(n−1),

δ∗(n) = −Re−1/2D−1u
(n)
e .

Elimination of u
(n)
e results in

δ∗(n) = −Re−1/2D−1Hδ∗(n−1). (7.20)

This is an iteration process with iteration matrix −Re−1/2D−1H. This process converges if
and only if

Re−1/2ρ(D−1H) < 1 (7.21)

(ρ is the spectral radius). As long as the flow remains attached, all eigenvalues of
−Re−1/2D−1H lie to the left of the imaginary axis. By means of (under)relaxation (7.21) can
be achieved. Also, increasing Re works favorably. When the flow is separated some eigenval-
ues λ lie to the right of the the imaginary axis, and usually right of the line <e λ = 1, hence
Jacobi relaxation can no longer prevent divergence. The model problem now is too simple to
show that increasing Re will not help.

The inverse method

In the inverse method (7.10) the iteration process is given by

δ∗(n) = −Re1/2H−1D δ∗(n−1). (7.22)

The iteration matrix is the inverse of the one from the direct method, thus

ρ(Re1/2H−1D) = max |λ(Re1/2H−1D)|

≥ min |λ(Re1/2H−1D)| = 1

max |λ(Re−1/2D−1H)|
=

1

ρ(Re−1/2D−1H)
.

In other words, the inverse method diverges as soon as the direct method converges. However,
as long as

<e
{
λ(−Re1/2H−1D)

}
< 1 (7.23)

Jacobi iteration can provide convergence. The requirement (7.23) can be rewritten as

<e
{
λ(U + Re1/2H−1D)

}
> 0 ⇐⇒ <e

{
λ(H + Re1/2D)

}
> 0,

since H is positive definite. Hence, the inverse method can be made convergent (with Jacobi)
if and only if Q is positive definite. The relaxation factor ω has to be chosen proportional to
Re−1/2 for large Re.
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Further, it is remarked that H is close to singular. The row sum in H is approximately
zero, since (7.13) gives

N∑
j=1

αij = −αi,0 − αi,N+1 =
1

πh
ln
i− 1

i

N + 1− i
N − i

=
1

πh
ln
i− 1

i

(
1 +

1

N − i

)
∼ 1

(1− β)Nπh
for N large and β ≡ i/N fixed.

There is an eigenvalue of H approaching zero proportional to 1/Nπh, i.e. inversely propor-
tional to the length of the interaction interval. H−1 grows proportional with this length, and
hence ω has to be chosen small, inducing an unfavorable influence on the convergence of the
iteration process.

The semi-inverse method

For the model problem (7.18) the semi-inverse method reads

uEe = Hδ∗(n−1), uBe = −Re1/2D δ∗(n−1),

δ∗(n) = δ∗(n−1) − ω[Re1/2D +H]δ∗(n−1).
(7.24)

The iteration matrix is
U − ω[Re1/2D +H] = U − ωQ.

The method converges if and only if

−1 < λ(U − ωQ) < 1 ⇐⇒ 0 < λ(ωQ) < 2

(Q is symmetric hence its eigenvalues are real). This can be satisfied for suitably chosen ω > 0
if and only if Q is positive definite.

The simultaneous method

Per boundary-layer station we can also solve the system (7.18) simultaneously. Using the
latest values per station we obtain{

u
(n)
ei − αiiδ

∗(n)
i =

∑
j<i αijδ

∗(n)
j +

∑
j>i αijδ

∗(n−1)
j ,

u
(n)
ei + diδ

∗(n)
i = 0.

(7.25)

Elimination of u
(n)
ei brings

(di + αii) δ
∗(n)
i = −

∑
j<i

αijδ
∗(n)
j −

∑
j>i

αijδ
∗(n−1)
j .

This is nothing more than the Gauss-Seidel method for solving

(Re1/2D +H)δ∗ = 0. (7.26)

From the theory on iterative methods it is known that for symmetric matrices Gauss-Seidel
converges if and only if the matrix is positive definite.
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Summary and discussion

The three latter methods have in common that for the model problem the condition ‘Q positive
definite’ is necessary and sufficient for a successful functioning. However, nothing has been
said about their converge rate. Practice learns that the inverse method clearly is the slowest.
A comparison between the semi-inverse method and the quasi-simultaneous method (in fact:
simultaneous) has been carried out by Lock & Williams (1987). They compute the turbulent
flow along an indented plate (§6.2 gives a laminar example). As in (7.10), the external flow is
given by thin-airfoil theory; after discretisation we obtain (7.15). The boundary layer is now
‘real’, instead of the simplified model (7.11). The figure below shows the convergence of both
methods.

One may ask what happens when the matrix Q does not satisfy the condition for con-
vergence of the above iterative methods. Probably there is a close link with physics. It was
assumed at the beginning of the chapter that the steady equations (7.1)+(7.2) do possess
a solution. This does not have to be the case. In reality, physics can become unsteady ;
this is usually accompanied by steady equations that are becoming singular. And indeed,
in practice one does only encounter steady flow when recirculation zones are very limited.
When the separation is more massive, the flow becomes unsteady. A very nice example is the
regular vortex shedding behind blunt bodies at modest Reynolds numbers; see e.g. the beau-
tiful photographs in Van Dyke (1982). At higher Reynolds numbers, separated flows become
‘almost immediately’ turbulent. In this vain, there is a consistent relation between physical
unsteadiness (instability) and mathematical/numerical problems with the steady equations.

7.5 Further analysis of the quasi-simultaneous method

With some assumptions about the flow operators it is possible to make a further analysis
of the (iterative) convergence properties of the quasi-simultaneous method. In particular,
information can be obtained on how to choose the interaction law. Hereto we adapt the
notation from (7.1) and (7.2) by assuming that the corresponding operators are matrices
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(compare the assumption in §7.4):

ue − Eδ∗ = 0, ue −Bδ∗ = 0,

from which ue can be eliminated to yield (compare (7.26))

(E −B) δ∗ = 0. (7.27)

In this notation, the quasi-simultaneous method reads

(I −B) δ∗(n) = (I − E) δ∗(n−1). (7.28)

As we are considering situations with steady flow (see the discussion at the end of §7.4),
it is natural to make the following assumption which allows theory to be developed (see Ap-
pendix 1 for some numerical basics to be used in the sequel):

Assumption A The matrices E −B and I −B are assumed to be irreducible M-matrices.

This assumption implies that these matrices have positive diagonal entries and non-positive
off-diagonal entries, whereas all of their eigenvalues lie in the stable positive half plane (and
the matrices cannot become singular). Note that we showed already in §7.3 that in the case
E = H, the matrix E itself is an M-matrix, and thus we demand that B is not ‘eating’ too
much from the diagonal. Compare the discussion after (7.19), where we required Q = E −B
to be positive definite. Thus, this assumption will be satisfied in many practical situations.

In general terms, the convergence rate of the viscous-inviscid iterations (7.28) improves
the more I resembles E, but the robustness of the method decreases, We will present some
theory on how the choice of I influences these numerical aspects.

Figure 7.1: The interaction law I (right) may be obtained from the external flow matrix E (left) by
omitting some off-diagonals (here only two diagonals on each side have been retained).

Viscous-inviscid iterations

Obviously, when I = E no viscous-inviscid iterations (VII) are necessary. However, we would
like to use a simpler I. But how to choose it? The physical idea for constructing an interaction
law is that it should contain the essential part of the interaction with the external flow, i.e.
it should contain the local effect of the interaction. From the mathematical, iterative point
of view, diagonal matrices are very tractable. Hence, physical and mathematical ideas come
together. Both suggest to define interaction laws in which some outer off-diagonals of E
are omitted, or in which its diagonal is enhanced. With E having non-positive off-diagonal
entries, this results in a class of matrices for which I ≥ E. The next theorem guarantees that,
indeed, such a choice leads to convergent VII iterations.
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Theorem Let the interaction law I be constructed such that I ≥ E. Moreover, let E and I
satisfy Assumption A. Then:
1) The viscous-inviscid iterations (7.28) are convergent.
2) The convergence rate of the viscous-inviscid iterations decreases monotonously with the
number of off-diagonals dropped.
Proof. 1) Since E − B and M ≡ I − B are M-matrices and N ≡ I − E ≥ 0, the splitting
E −B = (I −B)− (I − E) is regular and convergent (Appendix 1), i.e.

ρ(M−1N) = ρ((I −B)−1(I − E)) < 1, (7.29)

which proves convergence of the VII iterations.
2) Next let Ia and Ib be two different interaction laws, where Ib contains less off-diagonals
and/or a larger main diagonal, hence Ib ≥ Ia. Then 0 ≤ Na ≡ Ia − E ≤ Ib − E ≡ Nb ≥ 0,
and since the splittings of the M-matrix E −B are regular we have (Appendix 1)

ρ((Ia −B)−1(Ia − E)) ≤ ρ((Ib −B)−1(Ib − E)) < 1,

which proves the second part of the theorem. �

Further statements about the convergence of the viscous-inviscid iterations in relation to
the choice of the interaction law can be derived when a second assumption is made:

Assumption B The matrices B, E and I are assumed to have the same set of eigenvectors,
moreover with real eigenvalues.

This assumption will probably not hold in practice, but it allows to make more statements.
These will thus not be precise but of a more approximating nature. Having said this, let us
choose one of the assumed common eigenvectors and suppose the corresponding eigenvalues
are λB, λE and λI , respectively. Then the amplification factor of a single viscous-inviscid
iteration can easily be read from (7.29). For convergence we require

−1 ≤ λI − λE
λI − λB

≤ 1.

The two sides of this inequality lead to two separate requirements (note that the denominator
is positive according to Assumption A), namely

λI >
1
2(λB + λE) ∩ λE − λB > 0. (7.30)

The second requirement is satisfied because of Assumption A. The first requirement, graphi-
cally, states that in Fig. 7.2 the slope of the interaction law should be closer to the slope of
the external flow model (E) than to the slope of the boundary-layer relation (B).

Robustness

A final remark should be made about the robustness of the iterative process. For a solution
of the full problem (7.27) to exist, we need that E − B is non-singular (an M-matrix in
Assumption A). When this is the case, we do not want the iterations to break down because
I−B is singular, i.e. I−B should be nonsingular whenever E−B is. Graphically, in Fig. 7.2,
an interaction law with a slope smaller than the one from E could jeopardize the calculations;
an example is indicated by “non-robust interaction law”. A safer way is to choose the slope
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of I steeper than that of E, as indicated by “robust interaction law”. This is achieved by
choosing I > E. It can be shown that the more diagonals are dropped, the better (Veldman
2009). An I consisting of only a diagonal is best in this respect. From (7.14) we learn that
the diagonal entries then should be chosen as −4U∞/πh.

Figure 7.2: Boundary layer, inviscid flow and some interaction laws. The latter’s slope should be
sufficiently large to allow intersection with the boundary-layer relation.

7.6 Appendices

7.6.1 Appendix 1: Matrix prerequisites

In the above analysis use is made of a number of well-known results on matrices and iterative meth-
ods, which are collected here. A prominent role is played by M-matrices as defined in e.g. Varga
(1962)[Ch. 3.5]:

Definition A real matrix A = (ai,j) with ai,j ≤ 0 for all i 6= j is an M-matrix if A is nonsingular,
and A−1 ≥ 0.

Diagonal dominance, in combination with the correct sign pattern, produces M-matrices, as for-
mulated in the next theorem from Varga (1962)[p. 85]:

Theorem If A = (ai,j) is a real, irreducibly diagonally dominant matrix with ai,j ≤ 0 for all i 6= j,
and ai,i > 0 for all i, then A−1 > 0. Hence A is an irreducible M-matrix.

The properties of M-matrices are very helpful in generating regular splittings A = M − N , with
M−1 ≥ 0, N ≥ 0, for which Mx(k+1) = Nx(k) + b converges.

Theorem When A, M1 and M2 are M-matrices, whereas 0 ≤ N1 ≤ N2, then the splittings A =
Mi−Ni (i = 1, 2) are regular and convergent. In particular we have 0 ≤ ρ(M−1

1 N1) ≤ ρ(M−1
2 N2) < 1.

Proof. The proof follows e.g. from Th. 3.13 and Th. 3.15 in Varga (1962). �

7.6.2 Appendix 2: Generalization to other disciplines

The above analysis can be considered from a much more general view. The splitting of the flow field
in a viscous boundary layer and an inviscid outer flow is just one example of a problem that has been
split in two (or more) parts, i.e. it is a (heterogeneous) partitioned system. Thus the setting with two
parts that have to be ‘glued’ together is much more general. In most situations the ‘glueing’ is carried
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Figure 7.3: Dumpbell model as a generic example of a partitioned system.

out in terms of forces and displacements. In our example ue relates to the pressure, i.e. it is the ‘force’.
The name of δ∗, displacement thickness, already shows its character: ‘displacement’.

A generic example of a partitioned system is a robot arm consisting of two pieces, with mass M1

and M2, and located at x1 and x2, respectively (see Fig. 7.3). These pieces are connected by a rigid
rod of length `, i.e. x2 − x1 = `, hence they are acting forces F on each other. Each of the two parts
is described by an equation of motion (Newton’s second law), which links the ‘local’ x and F :

mass 1 F = M1ẍ1; mass 2 − F = M2ẍ2. (7.31)

Since only time derivatives of x appear, we may ignore the x-indices, and from now on just write x
for the position in space. In this example it is very easy to eliminate F , after which the combined
equation of motion is given by (M1 +M2)ẍ = 0, i.e. the combined body moves with constant velocity.

In general, one or both of the above equations may be very complicated, thus prohibiting a simul-
taneous (sometimes called monolithic) solution approach. Nevertheless, the whole scala of iterative
methods as described in the above sections can be used to solve the equations of motion. For instance,
the direct method reads

F (n) = M1ẍ
(n−1) followed by ẍ(n) = −M−1

2 F (n).

The amplification factor of this method is −M1/M2, hence it depends on the ‘mass’ ratio whether the
method converges or not.

In the quasi-simultaneous approach one of the equations, say the one for body 1, is approximated
by a simple equation (interaction law) F = m1ẍ. Then the quasi-simultaneous method reads (compare
(7.6))

F (n) −m1ẍ
(n) = (M1 −m1)ẍ(n−1),

F (n) +M2ẍ
(n) = 0.

The expression m1 is supposed simple enough to be solved simultaneously with the equation of motion
for the second body. Elimination of F gives

(m1 +M2)ẍ(n) = (m1 −M1)ẍ(n−1),

The amplification factor now reads (m1 −M1)/(m1 +M2), which will lead to convergence when

m1 >
1
2 (M1 −M2). (7.32)

Thus, when the direct method diverges (i.e. in case M1 > M2), the amount of interaction given in
(7.32) suffices to make the iterations convergent. We note that in a point of flow separation the ‘M2’
in the above general notation becomes zero. Also, compare this criterion with (7.30).
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Chapter 8

OTHER EQUATIONS OF
MOTION

8.1 Parabolised Navier–Stokes equations

An intermediate between the boundary-layer equations treated in these lecture notes and the
Navier–Stokes equations are the so-called parabolised Navier–Stokes equations (PNS). In the
boundary-layer coordinates of Chapter 5 these read

∂u

∂x
+
∂v

∂y
= 0, (8.1)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2
, (8.2)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+
∂2v

∂y2
. (8.3)

These equations can be applied in shear layers when the ‘standard’ boundary-layer equations
contain not enough physics (e.g. when streamline curvature is important §3.4). The required
boundary conditions read

at y = 0: u = v = 0,
for y →∞: u→ ue and p→ pe.

Here ue and pe have to correspond to each other according to the equations in the inviscid
external flow domain. Additionally, initial values are required at x = 0 (say), but also a
downstream condition at x = X. This is because, in contrast with what their name suggests,
in the incompressible case the PNS equations are not fully parabolic. They possess a partly
elliptic character caused by their acoustic part. In fully supersonic flow the equations are
genuinely parabolic. Because of their confusing name, in subsonic also the name reduced
Navier–Stokes equations (RNS) is used.

We will next discuss the discretisation of the PNS. When we consider these as an exten-
sion of the boundary-layer equations it is natural to discretise (8.1) just like (5.1). Also (8.2)
is treated as (5.2), apart from the term ∂p/∂x which is new (in (5.2) the pressure gradient
is prescribed, hence discretisation does not play a role there). In (8.3) the convective terms

79
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are treated similar to (8.2) and the diffusion is discretised in a central manner. Thus, at this
moment only the treatment of the pressure is still unclear.

To understand the role of the pressure in a flow, we have a short look at dynamical systems
with constraints (Dutch: nevenvoorwaarden). Start from a dynamical system

dy

dt
= f(y), y(t0) = y0. (8.4)

Under weak conditions for f , the dynamical behavior of the system is fully determined. When
we add some constraints, then ’forces’ have to be added to the dynamical system such that
these constraints are satisfied. The dynamical system gets the form

dy

dt
= f(y) + q,

Ly = 0,

where Ly = 0 is the constraint. Since at every moment in time the constraint is satisfied we
have

0 =
d

dt
(Ly) = L

dy

dt
= L(f(y) + q) ⇒ Lq = −L(f(y)). (8.5)

This equation determines q.

To start with, we can derive a general form of q. Hereto, decompose f(y) in two com-
ponents, of which one lies in the null space (kernel) of L, i.e. Ker(L), whereas the other
component is perpendicular to this. Then q has to compensate the latter component. This
is possible when q ⊥ Ker(L). From functional analysis (see Appendix 8.3) it is known that
Ker(L)⊥ = Ran(LT ). Here Ran denotes the range of an operator, in this case the range of
the adjoint of L. This implies that a p exists such that

q = LT p. (8.6)

In our flow problem, the constraint is the continuity equation div u = 0. The adjoint of the div
operator is −grad (see Appendix 8.3). Now we recognize that (8.6) leads to a term −grad p.
Further we recognize (8.5) as the Poisson equation for the pressure p (see CFD lecture notes).

The important message of this theory is that the derivatives of the pressure and the
derivatives from the continuity equation belong to operators that, viewed analytically, are
each others adjoint. This relation should also hold in a discrete formulation. In the first place
this means this that the discrete p should be defined at the positions where Dhu is computed.
Secondly, the discrete velocity should be defined at positions where Ghp is computed. Thirdly,
Gh = −DT

h should be acknowledged.

It can simply be verified that the MAC discretisation from the CFD lecture notes satisfies
the first two conditions. Verification of the third condition is more problematic; on irregular
grids usually it is not satisfied.

For the PNS equations this implies that p should be defined at points where u is defined.
Further, the y-momentum equation (and also ∂p/∂y) is applied in the point where v is defined.
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Finally, ∂p/∂x should be treated with a forward discretisation that is the adjoint of the
backward discretisation of ∂u/∂x from the continuity equation (for an equidistant grid). The
forward discretisation of ∂p/∂x implies that the downstream boundary value at x = X has
to help (by prescribing p for instance).

e
e
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�

4

4

4

vf f
� �

4

4

i− 2 i− 1 i i+ 1 i+ 2

j + 1

j

j − 1

u, p

u, p

v

v

v

contin. eq.

∂p/∂x

Positioning of
variables

Discretisation of continuity equation and
∂p/∂x at station i (B3)

8.2 General discretisation principles

The discretisation method we have treated for the Navier–Stokes equations, the PNS equations
and the boundary-layer equations can be brought in one unifying framework. Central is the
following question:

Is the diffusion in a given coordinate direction important?

• If yes, then the velocity components are staggered (Dutch literally: verschoven) in this
direction. Moreover, derivatives in this direction are centrally discretised.

• If no, then the velocity components are not staggered in this direction. The derivatives
in this direction are discretised one sided: the convective terms upwind, and acknowledge
Dh = −GTh .
Remark When diffusion is not important there is no harm in adding some extra diffusion
(through the upwind discretisation).

Be aware that answering the above question often will be subjective.

When the equations of motion are formulated in terms of ψ, ω (instead of u, v and p) no
staggering is needed. But the given rules for the discretisation remain valid. Check that when
these rules are applied to u = ∂ψ/∂y and v = −∂ψ/∂x, this precisely gives the staggered or
non-staggered positions for u and v as indicated above.

Below we present a table with an overview of the discretisation methods for the incom-
pressible equations treated this lecture series and in the lecture notes Computational Fluid
Dynamics. Also the incompressible Euler equations, not treated before, are included.
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Remark It should be stressed that this is not the only ‘holy’ discretisation system. For
example, in the ‘compressible world’ staggering is never used. There the problem with the
odd/even decoupling is tackled by means of adding artificial diffusion (explicit or via upwind).

Equation Diffusion Discretisation Positioning
-

6y

x

Navier–Stokes x, y
x
y

}
central

x
y

}
staggered f4

v

up

boundary-layer eq.,
PNS

y
x one sided
y central

y staggered

4e
4

v

u, p

Euler —
x
y

}
one sided

do not
stagger

4j u, v, p

8.3 Appendix: Some functional analysis

The adjoint operator Let U and V be two real-valued Hilbert spaces equipped with inner prod-
ucts ((·, ·))U , and ((·, ·))V , respectively. Let A be a linear operator A : U → V. Then its adjoint operator
AT is defined by

((u,AT v))U = ((Au, v))V for all u ∈ U and v ∈ V.

Proof of divT = −grad For functions that vanish on the boundary of their domain of definition
Ω, i.e. functions in H1

0 (Ω), one has

0 =

∫
∂Ω

φu · nd∂Ω =

∫
Ω

div (φu) dΩ =

∫
Ω

φ divudΩ +

∫
Ω

u · gradφdΩ.

The integrals are in fact inner products as referred to above. Rewriting gives∫
Ω

φ divudΩ = −
∫

Ω

u · gradφ dΩ ⇔ divT = −grad.

Proof of Ker(L)⊥ = Ran(LT ) Actually we are going to prove Ker(L) = Ran(LT )⊥. As usual
the proof goes in two directions.
⇒: Suppose x ∈ Ker(L), i.e. Lx = 0. Then for all y we have 0 = ((Lx, y)) = ((x, LT y)), i.e.

x ⊥ Ra(LT ). Thus Ker(L) ⊂ Ran(LT )⊥.
⇐: Suppose x ∈ Ran(LT )⊥, i.e. ((x, LT y)) = 0 ∀ y ⇔ ((Lx, y)) = 0 ∀ y. Since we are dealing with

Hilbert spaces we may conclude Lx = 0, i.e. x ∈ Ker(L). Thus Ran(LT )⊥ ⊂ Ker(L). �



83

LITERATURE

E.F.F. Botta, F.J. Hut & A.E.P. Veldman (1986). The role of periodic solutions in the Falkner–Skan
problem for λ > 0. J. Engng. Math. 20, 81–93.

P. Bradshaw (ed.) (1976). Turbulence. Springer Verlag, Berlin.

S.N. Brown & K. Stewartson (1969). Laminar separation. Ann. Rev. Fluid Mech. 1, 45–72.

J.E. Carter (1981). Viscous-inviscid interaction analysis of transonic turbulent separated flow. AIAA
paper 81-1241.

D. Catherall & K.W. Mangler (1966). The integration of the two-dimensional laminar boundary-layer
equations past the point of vanishing skin friction. J. Fluid Mech. 26, 163–182.

T. Cebeci & P. Bradshaw (1977). Momentum Transfer in Boundary Layers. McGraw-Hill, New
York.

T. Cebeci & J. Cousteix (1999). Modeling and Computation of Boundary-Layer Flows. Springer
Verlag, Berlin.
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EPILOGUE

In these lecture notes we have encountered various levels of flow modeling. For concrete
applications, each time a choice has to be made. In general, the effort to solve the equations of
motion will increase with a better description of the physics. A full description of the physics
is in practice impossible: the knowledge of mathematical algorithms and the possibilities of
computers are insufficient for the moment. A compromise will have to be sought, where the
physical demands and the mathematical/numerical possibilities have to be traded against
each other. This is characteristic of numerical flow simulation (CFD), and of any topic in the
vaster area of Computational Physics.

CFD consists of the following ingredients (see the above scheme):

• Modeling: The physical processes that are considered relevant in the studied flow prob-
lem are translated into a mathematical model.

• Discretisation: Next, the constitutive equations are discretised in space and time to a
numerical model.

• Solution: Finally, the discretised equations are solved, usually iterative and hence ap-
proximate.

• Validation: The value of the numerical results can be determined via a comparison
with data obtained along other ways, for example from experiments. If required, an
adaptation of the chosen models can be carried out.


