Mathematics. - An analogue of the nine-point circle in the space of n-dimensions. By J. C. H. Gerretsen. (Communicated by Prof. J. G. van der Corput.)
(Communicated at the meeting of October 27, 1945.)

1. Let the vertices of a simplex in the space of n dimensions be A_{0}, A_{1}, A_{2}, \ldots, A_{n}. It can be assumed that each edge $A_{i} A_{k}$ is perpendicular to the opposite ($n-2$)-dimensional boundary face, so the altitude lines through the vertices are concurrent in a point called the orthocentre of the simplex. Moreover the same peculiarity holds for every ($n-1$)-face of the simplex and the orthogonal projection of the orthocentre on any ($\mathrm{n}-1$)-face is just the orthocentre of that face. In the trivial case $n=2$ every point of the line $A_{i} A_{k}$ must be regarded as an orthocentre of the 1 -simplex with edges A_{i} and A_{k}.

In the case of an orthocentric simplex a generalisation of the nine-point circle of a triangle has been given by R. Mehmee, Arch. f. Math. u. Phys. 70 (1884), p. 210. It is our aim to give an analogue in the general case. In that case the altitude lines have not a point in common, but - as we shall see - there will be a point that has analogous properties as the orthocentre in the special case mentioned above.
2. Let $M_{i k}$ be the middle point of the edge $A_{i} A_{k}$ and $G_{i k}$ the centre of gravity of the opposite ($n-2$) -face $A_{i k}^{n-2}$. If G be the centre of gravity of the n-simplex, it is easily proved that the points $M_{i k}, G$ and $G_{i k}$ are collinear, the segment $M_{i k} G_{i k}$ being divided by G in the ratio ($n-1$): 2 .

The $n+1$ hyperplanes each going through the points $M_{i k}$ and perpendicular to the lines $A_{i} A_{k}$ are concurrent in a point M, the centre of the circumscribed hypersphere of the n-simplex. By a similitude with centre G and with ratio - $2:(n-1)$ these hyperplanes are transformed into the hyperplanes through the points $G_{i k}$, each being perpendicular to the opposite edge $A_{i} A_{k}$. Hence these hyperplanes are concurrent in a point H. In the case $n=3$ this is the well-known point of Monge; we will denote it as the point of MONGE in the general case also. The result can be formulated in the following way: the centre of gravity G is collinear with the centre of the circumscribed hypersphere M and the point of Monge H and divides the segments $M H$ in the ratio $(n-1): 2$. It is easily seen that in the case of the orthocentric simplex the point of Monge and the orthocentre are coincident.
3. Let H_{k} be the point of Monge of the ($n-1$)-face A_{k}^{n-1} opposite to the vertex $A_{k},(k=0,1, \ldots, n)$. Let ' A_{k} be the orthogonal projection of
A_{k} and ' H_{k} the orthogonal projection of H on that face. We will prove that the points ' $A_{k},{ }^{\prime} H_{k}$ and H_{k} are collinear and that ${ }^{\prime} H_{k}$ divides the segment ${ }^{\prime} A_{k} H_{k}$ in the ratio ($n-2$) : 1. It is to be noted that the theorem is trivial if $n \leqq 2$.

To prove the theorem we regard at first the edge $A_{0} A_{1}$. The point H_{n} is laying in the (n-2)-space perpendicular to $A_{0} A_{1}$ which is passing through the centre of gravity of the ($n-3$)-dimensional boundary simplex of the simplex $A_{0} \ldots A_{n-1}$ opposite to $A_{0} A_{1}$ and contained in that simplex. A similitude with centre ' A_{n} and ratio ($n-2$):(n-1) transforms this space into an ($n-2$)-dimensional space perpendicular to $A_{0} A_{1}$ going through the centre of gravity ' G_{01} of the simplex $A_{2} \ldots A_{n-1} A_{n}$. But this point is just the orthogonal projection of G_{01} on the space through the points $A_{0} \ldots A_{n-1}$ and therefore the ($n-2$)-space just mentioned is the intersection of the ($n-1$)-space through A_{0}, \ldots, A_{n-1} and the hyperplane through G_{01} perpendicular to $A_{0} A_{1}$. This space cuts the line ' $A_{n} H_{n}$ in the point ' H_{n} and the segment ' $A_{n} H_{n}$ is divided by ' H_{n} in the ratio ($n-2$) : 1 . If we take instead of $A_{0} A_{1}$ any other edge of the ($n-1$)-simplex $A_{0} \ldots A_{n_{-1}}$, we always find the same point ${ }^{\prime} H_{n}$. Therefore the point of Monge from the n-simplex must be situated on the line through ' H_{n} perpendicular to the hyperplane through $A_{0}, A_{1}, \ldots, A_{n_{-1}}$, q.e.d.
4. Now we are able to give an analogue of the nine-point circle in the following manner: Let G_{k} denote the centre of gravity of the ($n-1$)dimensional face opposite to the vertex A_{k}, P_{k} the point on the segment $A_{k} H$ on a distance $\frac{1}{n} A_{k} H$ from $H,{ }^{\prime} P_{k}$ the harmonic conjugate of H_{k} with regard to ' A_{k} and ' H_{k}. Then the $2(n+1)$ points $G_{k}, P_{k},{ }^{\prime} P_{k}$ are on one hypersphere. The centre N of this hypersphere is the harmonic conjugate of M with regard to G and H.

In proving this theorem we see that a similitude with centre G and ratio - $1: n$ transforms the circumscribed hypersphere of the n-simplex into the same hypersphere as is obtained by a similitude with centre H and ratio $1: n$. The points P_{k} and G_{k} are diametrically situated on this sphere and if " P_{k} denotes the orthogonal projection of P_{k} on the face opposite to $A_{k}-\angle P_{k} " P_{k} G_{k}$ is a right angle; hence " P_{k} is also on that sphere. An easy computation shows that " P_{k} is the harmonic conjugate of H_{k} with regard to ${ }^{\prime} A_{k}$ and ${ }^{\prime} H_{k}$, so the points " P_{k} and ${ }^{\prime} P_{k}$ coalesce.

