DSGMP > BI > FSE > RUG

Publications by Gert Vegter

  1. Dyer, R., Vegter, G. and Wintraecken, M.H.M.J. (2019) Simplices modelled on spaces of constant curvature.. . (URL) (BibTeX)
  2. Ebbens, Y.M., Iordanov, I., Teillaud, M. and Vegter, G. (2019) Delaunay triangulations of symmetric hyperbolic surfaces. In Abstracts of the 34th European Workshop on Computational Geometry.. (URL) (BibTeX)
  3. Feldbrugge, J., van Engelen, M., van de Weygaert, R., Pranav, P. and Vegter, G. (2019) Stochastic homology of Gaussian vs. non-Gaussian random fields: graphs towards Betti numbers and persistence diagrams.. . (URL) (BibTeX)
  4. Pranav, P., Van De Weygaert, R., Vegter, G., Jones, B. J. T., Adler, R. J., Feldbrugge, J., Park, C., Buchert, T. and Kerber, M. (2019) Topology and geometry of Gaussian random fields I: On Betti numbers, Euler characteristic, and Minkowski functionals.. . (BibTeX)
  5. Wintraecken, M.H.M.J. and Vegter, G. (2019) The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In Proceedings of the 31st Canadian Conference in Computational Geometry (CCCG 2019)., pages 275-279. (URL) (BibTeX)
  6. Amit Chattopadhyay, Gert Vegter and Chee K. Yap (2017) Certified computation of planar Morse-Smale complexes.. . Algorithms and Software for Computational Topology. (URL) (BibTeX)
  7. Bogdanov, M., Teillaud, M. and Vegter, G. (2016) Delaunay triangulations on orientable surfaces of low genus. In 32nd International Symposium on Computational Geometry (SoCG 2016). (Leibniz International Proceedings in Informatics, Eds.) Pages 20:1-20:17. (URL) (BibTeX)
  8. Pranav, P., Edelsbrunner, H., van de Weygaert, R., Vegter, G., Kerber, M., Jones, B. and Wintraecken, M. (2016) The Topology of the Cosmic Web in Terms of Persistent Betti Numbers.. . (URL) (BibTeX)
  9. Dyer, R, Vegter, G and Wintraecken, M.H.M.J. (2015) Riemannian simplices and triangulations. In Proceedings 31st International Symposium on Computational Geometry (SOCG 2015). July. Leibniz International Proceedings in Informatics, pages 255-269. (URL) (BibTeX)
  10. Dyer, R., Vegter, G. and Wintraecken, M.H.M.J. (2015) Riemannian simplices and triangulations.. . (URL) (BibTeX)
  11. Wintraecken, M.H.M.J. and Vegter, G. (2015) On the Optimal Triangulation of Convex Hypersurfaces, Whose Vertices Lie in Ambient Space.. . (URL) (BibTeX)
  12. Lien, Jyh-Ming, Sharma, Vikram, Vegter, Gert and Yap, Chee (2014) Isotopic Arrangement of Simple Curves: An Exact Numerical Approach Based on Subdivision. In Proceedings Mathematical Software -- ICMS 2014., pages 277-282. (BibTeX)
  13. Broer, H.W. and Vegter, G. (2013) In Resonance and singularities. (Ibáñez, S., Pérez del Río, J.S., Pumariño, A. and Rodríguez, J.Á., Eds.). Heidelberg, Springer, pages 89-126. (URL) (BibTeX)
  14. Broer, H. W., Holtman, S. J., Vegter, G. and Vitolo, R. (2011) Dynamics and Geometry Near Resonant Bifurcations.. . (URL) (BibTeX)
  15. Broer, H. W., Holtman, S.J. and Vegter, G. (2010) Recognition of resonance type in periodically forced oscillators.. . (BibTeX)
  16. Broer, H.W., Holtman, S.J., Vegter, G. and Vitolo, R. (2009) Geometry and dynamics of mildly degenerate Hopf-Neimarck-Sacker families near resonance.. . (URL) (BibTeX)
  17. Broer, H.W., Holtman, S.J. and Vegter, G. (2008) Recognition of the bifurcation type of resonance in mildly degenerate Hopf-Neimark-Sacker families.. . (BibTeX)
  18. Broer, H.W. and Vegter, G. (2008) Generic Hopf-Ne\u\imark-Sacker bifurcations in feed forward systems.. . (BibTeX)
  19. Broer, H.W., Golubitsky, M. and Vegter, G. (2007) Geometry of resonance tongues. In Singularity Theory, Proc. 2005 Marseille Singularity School and Conference,dedicated to Jean-Paul Brasselet on His 60th Birthday., pages 327-356. (BibTeX)
  20. Broer, H.W., Hagen, A. and Vegter, G. (2007) Numerical continuation of normally hyperbolic invariant manifolds.. . (BibTeX)
  21. Broer, H.W., Hagen, A. and Vegter, G. (2006) A versatile algorithm for computing invariant manifolds. In Model Reduction and Coars-Graining Approaching for Multiscale Phenomena., pages 17-38. (BibTeX)
  22. Broer, H.W., Van Noort, M., Sim\'o, C. and Vegter, G. (2004) The parametrically forced pendulum: a case study in $1\frac12$ degree of freedom.. . (BibTeX)