Alef Sterk > DSMP > MATHS > JBI > FWN > RUG

For my curriculum vitae see my LinkedIn page. For citation indices see my Google Scholar Page. Most of my papers can also be downloaded from ResearchGate.


Journal articles (peer reviewed)

  1. Holland, M.P. and Sterk, A.E. (2021) On max-semistable laws and extremes for dynamical systems.. . (URL) (BibTeX)
  2. Boer, N.B. and Sterk, A.E. (2021) Generalized Fibonacci numbers and extreme value laws for the R\'enyi map.. . (URL) (BibTeX)
  3. Pelzer, A.F.G. and Sterk, A.E. (2020) Finite cascades of pitchfork bifurcations and multistability in generalized Lorenz-96 models.. . (URL) (BibTeX)
  4. De Jong, T.G., Sterk, A.E. and Broer, H.W. (2020) Fungal tip growth arising through a codimension-1 global bifurcation.. . (URL) (BibTeX)
  5. Gaiko, V.A., Broer, H.W. and Sterk, A.E. (2019) Global bifurcation analysis of Topp system.. . (URL) (BibTeX)
  6. De Jong, T.G., Sterk, A.E. and Guo, F. (2019) Numerical method to compute hypha tip growth for data driven validation.. . (URL) (BibTeX)
  7. Van Kekem, D.L. and Sterk, A.E. (2019) Symmetries in the Lorenz-96 model.. . (URL) (BibTeX)
  8. Ghane, H., Sterk, A.E. and Waalkens, H. (2019) Chaotic dynamics from a pseudo-linear system.. . (URL) (BibTeX)
  9. Sterk, A.E. and M.P. Holland (2018) Extreme value laws and mean squared error growth in dynamical systems.. . (URL) (BibTeX)
  10. Van Kekem, D.L. and Sterk, A.E. (2018) Wave propagation in the Lorenz-96 model.. . (URL) (BibTeX)
  11. Garst, S. and Sterk, A.E. (2018) Periodicity and chaos amidst twisting and folding in 2-dimensional maps.. . Feature article. (URL) (BibTeX)
  12. Van Kekem, D.L. and Sterk, A.E. (2018) Travelling waves and their bifurcations in the Lorenz-96 model.. . (URL) (BibTeX)
  13. Sterk, A.E. and Van Kekem, D.L. (2017) Predictability of extreme waves in the Lorenz-96 model near intermittency and quasi-periodicity.. . (URL) (BibTeX)
  14. Garst, S. and Sterk, A.E. (2016) The dynamics of a fold-and-twist map.. . (URL) (BibTeX)
  15. Sterk, A.E. (2016) Extreme amplitudes of a periodically forced Duffing oscillator.. . (URL) (BibTeX)
  16. Holland, M.P., Rabassa, P. and Sterk, A.E. (2016) Quantitative recurrence statistics and convergence to an extreme value distribution for non-uniformly hyperbolic dynamical systems.. . (URL) (BibTeX)
  17. Sterk, A.E., Stephenson, D.B., Holland, M.P. and Mylne, K.R. (2016) On the predictability of extremes: does the butterfly effect ever decrease?. . (URL) (BibTeX)
  18. Sterk, A.E., Holland, M.P., Rabassa, P., Broer, H.W. and Vitolo, R. (2012) Predictability of extreme values in geophysical models.. . (URL) (BibTeX)
  19. Holland, M.P., Vitolo, R., Rabassa, P., Sterk, A.E. and Broer, H.W. (2012) Extreme value laws in dynamical systems under physical observables.. . (URL) (BibTeX)
  20. Broer, H.W., Dijkstra, H.A., Sim\'o, C., Sterk, A.E. and Vitolo, R. (2011) The dynamics of a low-order model for the Atlantic Multidecadal Oscillation.. . (URL) (BibTeX)
  21. Sterk, A.E., Vitolo, R., Broer, H.W., Sim\'o, C. and Dijkstra, H.A. (2010) New nonlinear mechanisms of midlatitude atmospheric low-frequency variability.. . (URL) (BibTeX)
  22. Hassi, S., Snoo, H.S.V. de, Sterk, A.E. and Winkler, H. (2006) Non-standard boundary conditions for a class of Sturm--Liouville problems.. . (BibTeX)

Proceedings (peer reviewed)

  1. Maathuis, Henry, Boulogne, Luuk, Wiering, Marco and Sterk, Alef (2017) Predicting chaotic time series using machine learning techniques. In Preproceedings of the 29th Benelux Conference on Artificial Intelligence (BNAIC 2017). November. (Bart Verheij and Marco Wiering, Eds.) University of Groningen, pages 326-340. (URL) (BibTeX)

Book chapters (peer reviewed)

  1. De Jong, T.G. and Sterk, A.E. (2020) Topological shooting of solutions for Fickian diffusion into core-shell geometry. In Nonlinear Dynamics of Discrete and Continuous Systems (Abramian, Andrei K., Andrianov, Igor V. and Gaiko, Valery A., Eds.), pages 103-116. Springer International Publishing. (URL) (BibTeX)
  2. Hassi, S., Snoo, H.S.V. de, Sterk, A.E. and Winkler, H. (2007) Finite-dimensional graph perturbations of selfadjoint Sturm--Liouville problems. In Operator Theory, Structured Matrices, and Dilations: Tiberiu Constantinescu Memorial Volume (Bakonyi, M., Gheondea, A., Putinar, M. and Rovnjak, J., Eds.), pages 205-228. The Theta Foundation. (URL) (BibTeX)

Popular writings, reviews, etc.

  1. Sterk, Alef (2018) Exploring complex dynamics with Lyapunov exponents.. . (BibTeX)
  2. Sterk, Alef (2017) Book review of ``Extremes and Recurrence in Dynamical Systems by Valerio Lucarini et al. (in Dutch).''. . (URL) (BibTeX)
  3. Van Kekem, Dirk and Sterk, Alef (2017) Bifurcations and chaos in the Lorenz-96 model.. . (URL) (BibTeX)
  4. Sterk, Alef (2015) De voorspelbaarheid van weersextremen.. . (URL) (BibTeX)
  5. Sterk, Alef (2014) The statistics of extreme values in deterministic systems.. . (URL) (BibTeX)
  6. Sterk, Alef, Vitolo, Renato and Broer, Henk (2013) Het venijn van de onvoorspelbare staart.. . (URL) (BibTeX)
  7. Sterk, Alef E. (2012) Wiskunde in weer en wind.. . (URL) (BibTeX)
  8. Sterk, Alef (2012) Book review of ``Understanding Real Analysis by Paul Zorn (in Dutch).''. . (URL) (BibTeX)


  1. Sterk, A.E. (2010) Atmospheric Variability and the Atlantic Multidecadal Oscillation: Mathematical Analysis of Low-Order Models. PhD thesis. (URL) (BibTeX)
  2. Sterk, A.E. (2006) Non-standard boundary conditions for Sturm--Liouville operators in the limit point case. Master's thesis. (URL) (BibTeX)

MathSciNet Mathematical Reviews

  1. MR4258128 (2022)