Journal articles

89

M. K. Camlibel and P. Rapisarda
Beyond the fundamental lemma: from finite time series to linear system
under review
[Arxiv] [Google Scholar]

88

A.M. Burohman, B. Besselink, J.M.A. Scherpen, and M.K. Camlibel
From data to reduced order models via moment matching
under review
[Arxiv] [Google Scholar]

87

P. Rapisarda, M.K. Camlibel, and H.J. van Waarde
Orthogonal bases for data-driven analysis and control of continuous-time systems
accepted for publication in IEEE Transactions on Automatic Control

86

H.J. van Waarde, J. Eising, M.K. Camlibel, and H.L. Trentelman
A behavioral approach to data-driven control with noisy input-output data
IEEE Transactions on Automatic Control, 69(2):813–827, 2024
[Publisher] [Arxiv] [Google Scholar]

85

A persistency of excitation condition for continuous-time systems
IEEE Control Systems Letters, 7:589–594, 2023
[Publisher]

84

M. K. Camlibel, M. Guay, and S. Tarbouriech
Data-driven analysis and control
IEEE Control Systems Letters, 7:1596–1597, 2023
[Publisher] [Google Scholar]

83

H.J. van Waarde, J. Eising, M.K. Camlibel, and H.L. Trentelman
The informativity approach to data-driven analysis and control
IEEE Control Systems Magazine, 43(6):32–66, 2023
[Publisher] [Arxiv] [Google Scholar]

82

A.M. Burohman, B. Besselink, J.M.A. Scherpen, M.K. Camlibel
From data to reduced-order models via generalized balanced truncation
IEEE Transactions on Automatic Control, 68(10):6160–6175, 2023
[Publisher] [Arxiv] [Google Scholar]

81

P. Rapisarda, M.K. Camlibel, and H. J. van Waarde
A “fundamental lemma” for continuous-time systems, with applications to data-driven simulation
Systems & Control Letters, 179: 105603, 2023
[Publisher] [Arxiv]

80

H.J. van Waarde, M.K. Camlibel, J. Eising, and H.L. Trentelman
Quadratic matrix inequalities with applications to data-based control
SIAM Journal on Control and Optimization, 61:(4) 2251–2281, 2023
[Publisher] [Arxiv] [Google Scholar]

79

M.K. Camlibel and A.J. van der Schaft
Port-Hamiltonian systems and monotonicity
SIAM Journal on Control and Optimization, 61:(4) 2193–2221, 2023
[Publisher] [Arxiv] [Google Scholar]

78

I. Oner and M. K. Camlibel
Stabilizability of strict convex processes with respect to arbitrary stability domains
SIAM Journal on Control and Optimization, 61:(3) 1819–1834, 2023
[Publisher] [Google Scholar]

77

K. Shomalzadeh, J.M.A. Scherpen, and M.K. Camlibel
A real-time balancing market optimization with personalized prices: from bilevel to convex
Operations Research Perspectives, 10:100276, 2023
[Publisher] [Arxiv] [Google Scholar]

76

P. Rapisarda, M.K. Camlibel, and H.J. van Waarde
A persistency of excitation condition for continuous-time systems
IEEE Control Systems Letters, 7:589–594, 2023
[Publisher] [Google Scholar]

75

J. Jiao, H.L. Trentelman, and M.K. Camlibel
\(H_2\) and \({H}_{\infty}\) suboptimal distributed filter design for linear systems
IEEE Transactions on Automatic Control, 68(4):2560–2567, 2023
[Publisher] [Arxiv] [Google Scholar]

74

J. Eising and M.K. Camlibel
Data informativity for analysis of linear systems with convex conic constraints
IEEE Control Systems Letters, 6:391–396, 2022
[Publisher] [Arxiv] [Google Scholar]

73

B.M. Shali, H.J. van Waarde, M.K. Camlibel, and H.L. Trentelman
Properties of pattern matrices with applications to structured systems
IEEE Control Systems Letters, 6:109–114, 2022
[Publisher] [Arxiv] [Google Scholar]

72

H.J. van Waarde, M.K. Camlibel, P. Rapisarda and H.L. Trentelman
Data-driven dissipativity analysis: application of the matrix S-lemma
IEEE Control Systems Magazine, 42(3):140–149, 2022
[Publisher] [Arxiv] [Google Scholar]

71

H.L. Trentelman, H.J. van Waarde, and M.K. Camlibel
An informativity approach to the algebraic regulator problem
IEEE Transactions on Automatic Control, 67(11):6227–6233, 2022
[Publisher] [Arxiv] [Google Scholar]

70

H.J. van Waarde, M.K. Camlibel, and M. Mesbahi
From noisy data to feedback controllers: non-conservative design via a matrix S-lemma
IEEE Transactions on Automatic Control, 67(1):162–175, 2022
[Publisher] [Arxiv] [Google Scholar]

69

J. Jia, B.M. Shali, H.J. van Waarde, M.K. Camlibel, and H.L. Trentelman
Scalable controllability analysis of structured networks
IEEE Transactions on Control of Network Systems, 9(2):891–903, 2022
[Publisher] [Arxiv] [Google Scholar]

68

J. Eising and M.K. Camlibel
On eigenvectors of convex processes in non-pointed cones
Journal of Mathematical Analysis and Applications, 513(2):126236, 2022
[Publisher] [Arxiv] [Google Scholar]

67

M.K. Camlibel, L. Iannelli, and A. Tanwani
Convergence of proximal solutions for evolution inclusions with time-dependent maximal monotone operators
Mathematical Programming, 194:1017-1059, 2022
[Publisher] [Arxiv] [Google Scholar]

66

K. Shomalzadeh, J.M.A. Scherpen, and M.K. Camlibel
Bilevel aggregator-prosumers’ optimization problem in real-time: a convex optimization approach
Operations Research Letters, 50(5):568–573, 2022
[Publisher] [Arxiv] [Google Scholar]

65

J. Eising and M. K. Camlibel
A geometric approach to convex processes: from reachability to stabilizability
SIAM Journal on Control and Optimization, 60(4):2574–2600, 2022
[Publisher] [Arxiv] [Google Scholar]

64

H.J. van Waarde, P. Tesi, and M.K. Camlibel
Topology identification of heterogeneous networks: identifiability and reconstruction
Automatica, 123:109331, 2021
[Publisher] [Arxiv] [Google Scholar]

63

J. Jia, H.J. van Waarde, H.L. Trentelman, and M.K. Camlibel
A unifying framework for strong structural controllability
IEEE Transactions on Automatic Control, 66(1):391–398, 2021
[Publisher] [Arxiv] [Google Scholar]

62

J. Jia, H.L. Trentelman, N. Charalampidis, and M.K. Camlibel
Strong structural controllability of colored structured systems
Systems & Control Letters, 152:104974, 2021
[Publisher] [Arxiv] [Google Scholar]

61

J. Jiao, H.L. Trentelman, and M.K. Camlibel
H_2 suboptimal output synchronization of heterogeneous multi-agent systems
Systems & Control Letters, 149:104872, 2021
[Publisher] [Arxiv] [Google Scholar]

60

J. Jiao, H.L. Trentelman, and M.K. Camlibel
A suboptimality approach to distributed H_2 control by dynamic output feedback
Automatica, 121:109164, 2020
[Publisher] [Arxiv] [Google Scholar]

59

W.P.M.H. Heemels, M.K. Camlibel, and M.F. Heertjes
Oblique projected dynamical systems and incremental stability under state constraints
IEEE Control Systems Letters, 4(4):1060–1065, 2020
[Publisher] [Google Scholar]

58

J. Jia, H.L. Trentelman, and M.K. Camlibel
Fault detection and isolation for linear structured systems
IEEE Control Systems Letters, 4(4):874–879, 2020
[Publisher] [Arxiv] [Google Scholar]

57

H.J. van Waarde, C. de Persis, M.K. Camlibel, and P. Tesi
Willems’ fundamental lemma for state-space systems and its extension to multiple datasets
IEEE Control Systems Letters, 4(3):602–607, 2020
[Publisher] [Arxiv] [Google Scholar]

56

J. Jiao, H.L. Trentelman, and M.K. Camlibel
Distributed linear quadratic optimal control: compute locally and act globally
IEEE Control Systems Letters, 4(1):67–72, 2020
[Publisher] [Arxiv] [Google Scholar]

55

H.J. van Waarde, J. Eising, H.L. Trentelman, and M.K. Camlibel
Data informativity: a new perspective on data-driven analysis and control
IEEE Transactions on Automatic Control, 65(11):4753–4768, 2020
[Publisher] [Arxiv] [Google Scholar]

54

H.J. van Waarde, P. Tesi, and M.K. Camlibel
Necessary and sufficient topological conditions for identifiability of dynamical networks
IEEE Transactions on Automatic Control, 65(11):4525–4537, 2020
[Publisher] [Arxiv] [Google Scholar]

53

J. Jia, H.L. Trentelman, W. Baar, and M.K. Camlibel
Strong structural controllability of systems on colored graphs
IEEE Transactions on Automatic Control, 65(10):3977–3990, 2020
[Publisher] [Arxiv] [Google Scholar]

52

M. Jozsa, M. Petreczky, and M.K. Camlibel
Causality and network graph in general bilinear state-space representations
IEEE Transactions on Automatic Control, 65(8):3623–3630, 2020
[Publisher] [Google Scholar]

51

J. Jiao, H.L. Trentelman, and M.K. Camlibel
A suboptimality approach to distributed linear quadratic optimal control
IEEE Transactions on Automatic Control, 65(3):1218–1225, 2020
[Publisher] [Arxiv] [Google Scholar]

50

J. Eising and M.K. Camlibel
On reachability and null-controllability of nonstrict convex processes
IEEE Control Systems Letters, 3(3):751–756, 2019
[Publisher] [Arxiv] [Google Scholar]

49

H.J. van Waarde, P. Tesi, and M.K. Camlibel
Topology reconstruction of dynamical networks via constrained Lyapunov equations
IEEE Transactions on Automatic Control, 64(10):4300–4306, 2019
[Publisher] [Arxiv] [Google Scholar]

48

M. Jozsa, M. Petreczky, and M.K. Camlibel
Relationship between Granger non-causality and network graph of state-space representations
IEEE Transactions on Automatic Control, 64(3):912–927, 2019
[Publisher] [Arxiv] [Google Scholar]

47

H.J. van Waarde, P. Tesi, and M.K. Camlibel
Identifiability of undirected dynamical networks: a graph-theoretic approach
IEEE Control Systems Letters, 2(4):683–688, 2018
[Publisher] [Arxiv] [Google Scholar]

46

H.J. Jongsma, H.L. Trentelman, and M.K. Camlibel
Model reduction of networked multi-agent systems by cycle removal
IEEE Transactions on Automatic Control, 63(3):657–671, 2018
[Publisher] [Google Scholar]

45

J. Wei, A.R.F. Everts, M.K. Camlibel, and A.J. van der Schaft
Consensus dynamics with arbitrary sign-preserving nonlinearities
Automatica, 83:226–233, 2017
[Publisher] [Arxiv] [Google Scholar]

44

H.J. van Waarde, M.K. Camlibel, and H.L. Trentelman
A distance-based approach to strong target control of dynamical networks
IEEE Transactions on Automatic Control, 62(12):6266–6277, 2017
[Publisher] [Arxiv] [Google Scholar]

43

H.J. van Waarde, M.K. Camlibel, and H.L. Trentelman
Comments on ‘On the necessity of diffusive couplings in linear synchronization problems with quadratic cost’
IEEE Transactions on Automatic Control, 62(6):3099–3101, 2017

42

W.P.M.H. Heemels, V. Sessa, F. Vasca, and M.K. Camlibel
Computation of periodic solutions in maximal monotone dynamical systems
Nonlinear Analysis: Hybrid Systems, 24:100–114, 2017
[Publisher] [Google Scholar]

41

A.R.F. Everts and M.K. Camlibel
When is a linear multi-modal system disturbance decoupled?
Systems & Control Letters, 101:50–57, 2017
[Publisher] [Google Scholar]

40

N. Monshizadeh, H. Trentelman, and M.K. Camlibel
Uniform synchronization in multi-agent systems with switching topologies
International Journal of Robust and Nonlinear Control, 26(9):1888–1901, 2016
[Publisher] [Google Scholar]

39

M.K. Camlibel and J.M. Schumacher
Linear passive systems and maximal monotone mappings
Mathematical Programming, 157(2):397–420, 2016
[Publisher] [Google Scholar]

38

H.J. Jongsma, H.L. Trentelman, and M.K. Camlibel
Robust synchronization of coprime factor perturbed networks
Systems & Control Letters, 95:62–69, 2016
[Publisher] [Google Scholar]

37

M.D. Kaba and M.K. Camlibel
A spectral characterization of controllability for discrete-time systems with conic constraints
SIAM Journal on Control and Optimization, 53(4):2350–2372, 2015
[Publisher] [Google Scholar]

36

N. Monshizadeh, S. Zhang, and M.K. Camlibel
Disturbance decoupling problem for multi-agent systems: a graph topological approach
Systems & Control Letters, 76:35–41, 2015
[Publisher] [Google Scholar]

35

Y. Eren, J. Shen, and M.K. Camlibel
Quadratic stability and stabilization of bimodal piecewise linear systems
Automatica, 50(5):1444–1450, 2014
[Publisher] [Google Scholar]

34

N. Monshizadeh, S. Zhang, and M.K. Camlibel
Zero forcing sets and controllability of dynamical systems defined on graphs
IEEE Transactions on Automatic Control, 59(9):2562–2567, 2014
[Publisher] [Google Scholar]

33

S. Zhang, M. Cao, and M.K. Camlibel
Upper and lower bounds on controllable subspaces of networks of diffusively coupled agents
IEEE Transactions on Automatic Control, 59(3):745–750, 2014
[Publisher] [Google Scholar]

32

N. Monshizadeh, H.L. Trentelman, and M.K. Camlibel
Projection based model reduction of multi-agent systems using graph partitions
IEEE Transactions on Control of Network Systems, 1(2):145–154, 2014
[Publisher] [Google Scholar]

31

M.K. Camlibel, L. Iannelli, and F. Vasca
Passivity and complementarity
Mathematical Programming, 145(1-2):531–563, 2014
[Publisher] [Google Scholar]

30

L.Q. Thuan and M.K. Camlibel
Controllability and stabilizability of a class of continuous piecewise affine dynamical systems
SIAM Journal of Control and Optimization, 52(3):1914–1934, 2014
[Publisher] [Google Scholar]

29

L.Q. Thuan and M.K. Camlibel
On the existence, uniqueness and nature of Caratheodory and Filippov solutions for bimodal piecewise affine dynamical systems
Systems & Control Letters, 68:76–85, 2014
[Publisher] [Arxiv] [Google Scholar]

28

M. Cao, S. Zhang, and M.K. Camlibel
A class of uncontrollable diffusively coupled multi-agent systems with multi-chain topologies
IEEE Transactions on Automatic Control, 58(2):465–469, 2013
[Publisher] [Google Scholar]

27

E. Yurtseven, M.K. Camlibel, and W.P.M.H. Heemels
Controllability of a class of bimodal discrete-time piecewise linear systems
Systems & Control Letters, 62(4):338–344, 2013
[Publisher] [Google Scholar]

26

N. Monshizadeh, H.L. Trentelman, and M.K. Camlibel
Stability and synchronization preserving model reduction of multi-agent systems
Systems & Control Letters, 62(1):1–10, 2013
[Publisher] [Google Scholar]

25

M. Egerstedt, S. Martini, M. Cao, M.K. Camlibel, and A. Bicchi
Interacting with networks: How does structure relate to controllability in single-leader consensus networks?
IEEE Control Systems Magazine, 32(4):66–73, 2012
[Publisher] [Google Scholar]

24

N. Monshizadeh, H.L. Trentelman, and M.K. Camlibel
A simultaneous balanced truncation approach to model reduction of switched linear systems
IEEE Transactions on Automatic Control, 57(12):3118–3131, 2012
[Publisher] [Google Scholar]

23

M.K. Camlibel, S. Zhang, and M. Cao
Comments on ‘Controllability analysis of multi-agent systems using relaxed equitable partitions’
International Journal of Systems, Control and Communications, 4(1-2):72–75, 2012
[Publisher] [Google Scholar]

22

L. Han, M.K. Camlibel, J.-S. Pang, and W.P.M.H. Heemels
A unified numerical scheme for linear-quadratic optimal control problems with joint control and state constraints
Optimization Methods and Software, 27(4-5):761–799, 2012
[Publisher] [Google Scholar]

21

E. Yurtseven, W.P.M.H. Heemels, and M.K. Camlibel
Disturbance decoupling of switched linear systems
Systems & Control Letters, 61(1):69–78, 2012
[Publisher] [Google Scholar]

20

L.Q. Thuan and M.K. Camlibel
Continuous piecewise affine dynamical systems do not exhibit Zeno behavior
IEEE Trans. on Automatic Control, 56(8):1932–1936, 2011
[Publisher] [Google Scholar]

19

W.P.M.H. Heemels, M.K. Camlibel, J.M. Schumacher, and B. Brogliato
Observer-based control of linear complementarity systems
International Journal of Robust and Nonlinear Control, 21(10):1193–1218, 2011

18

R. Frasca, M.K. Camlibel, I.C. Goknar, L. Iannelli, and F. Vasca
Linear passive networks with ideal switches: consistent initial conditions and state discontinuities
IEEE Transactions on Circuits and Systems I, 57(12):3138–3151, 2010
[Publisher] [Google Scholar]

17

F. Vasca, L. Iannelli, M.K. Camlibel, and R. Frasca
A new perspective for modeling power electronics converters: complementarity framework
IEEE Trans. on Power Electronics, 24(2):456–468, 2009
[Publisher] [Google Scholar]

16

L. Han, A. Tiwari, M.K. Camlibel, and J.-S. Pang
Convergence of time-stepping schemes for passive and extended linear complementarity systems
SIAM Journal on Numerical Analysis, 47(5):3768–3796, 2009
[Publisher] [Google Scholar]

15

M.K. Camlibel and R. Frasca
Extension of Kalman-Yakubovich-Popov lemma to descriptor systems
Systems & Control Letters, 58(12):795–803, 2009
[Publisher] [Google Scholar]

14

M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher
A full characterization of stabilizability of bimodal piecewise linear systems with scalar inputs
Automatica, 44(5):1261–1267, 2008
[Publisher] [Google Scholar]

13

M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher
Algebraic necessary and sufficient conditions for the controllability of conewise linear systems
IEEE Trans. on Automatic Control, 53(3):762–774, 2008
[Publisher] [Google Scholar]

12

A.C. van der Heijden, A.F.A. Serrarens, M.K. Camlibel, and H. Nijmeijer
Hybrid optimal control of dry clutch engagement
International Journal of Control, 80(11):1717–1728, 2007
[Publisher] [Google Scholar]

11

M.K. Camlibel and H. Nijmeijer
Analysis and control of nonsmooth dynamical systems
International Journal of Robust and Nonlinear Control, 17(15):1365–1366, 2007
[Publisher]

10

M.K. Camlibel
Popov-Belevitch-Hautus type tests for the controllability of linear complementarity systems
Systems & Control Letters, 56(5):381–387, 2007
[Publisher] [Google Scholar]

9

M.K. Camlibel, J.-S. Pang, and J. Shen
Conewise linear systems: non-Zenoness and observability
SIAM Journal on Control and Optimization, 45(5):1769–1800, 2006
[Publisher] [Google Scholar]

8

M.K. Camlibel, J.-S. Pang, and J. Shen
Lyapunov stability of complementarity and extended systems
SIAM Journal on Optimization, 17(4):1056–1101, 2006
[Publisher] [Google Scholar]

7

M.K. Camlibel, W.P.M.H. Heemels, A.J. van der Schaft, and J.M. Schumacher
Switched networks and complementarity
IEEE Transactions on Circuits and Systems I, 50(8):1036–1046, 2003
[Publisher] [Google Scholar]

6

M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher
On linear passive complementarity systems
European Journal of Control, 8(3):220–237, 2002
[Publisher] [Google Scholar]

5

M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher
Consistency of a time-stepping method for a class of piecewise linear networks
IEEE Transactions on Circuits and Systems I, 49(3):349–357, 2002
[Publisher] [Google Scholar]

4

W.P.M.H. Heemels, M.K. Camlibel, and J.M. Schumacher
On the dynamic analysis of piecewise linear networks
IEEE Transactions on Circuits and Systems I, 49(3):315–327, 2002
[Publisher] [Google Scholar]

3

M.K. Camlibel and J.M. Schumacher
Existence and uniqueness of solutions for a class of piecewise linear dynamical systems
Linear Algebra and its Applications, 351-352:147–184, 2002
[Publisher] [Google Scholar]

2

W.P.M.H. Heemels, M.K. Camlibel, and J.M. Schumacher
On event driven simulation of electrical circuits with ideal diodes
Journal Europeen des Systemes Automatises, 35(4):467–488, 2001
[Google Scholar]

1

Y.J. Lootsma, A.J. van der Schaft, and M.K. Camlibel
Uniqueness of solutions of relay systems
Automatica, 35(3):467–478, 1999
[Publisher] [Google Scholar]