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Abstract

Let X1, . . . , Xn be independent, uniformly random points from [0, 1]2. We prove that if
we add edges between these points one by one by order of increasing edge length then, with
probability tending to 1 as the number of points n tends to ∞, the resulting graph gets its
first Hamilton cycle at exactly the same time it loses its last vertex of degree less than two.
This answers an open question of Penrose and provides an analogue for the random geometric
graph of a celebrated result of Ajtai, Komlós and Szemerédi and independently of Bollobás on
the usual random graph. We are also able to deduce very precise information on the limiting
probability that the random geometric graph is Hamiltonian analogous to a result of Komlós
and Szemerédi on the usual random graph. The proof generalizes to uniform random points
on the d-dimensional hypercube where the edge-lengths are measured using the lp-norm for
some 1 < p ≤ ∞. The proof can also be adapted to show that, with probability tending to 1
as the number of points n tends to ∞, there are cycles of all lengths between 3 and n at the
moment the graph loses its last vertex of degree less than two.

Keywords: random geometric graph, Hamilton cycles.

1 Introduction and statement of result

Let X1, X2, · · · ∈ [0, 1]2 be a sequence of random points, chosen idenpendently and uniformly at
random from [0, 1]2. For n ∈ N and r ≥ 0 the random geometric graph G(n, r) has vertex set
Vn := {X1, . . . , Xn} and an edge XiXj ∈ En iff ‖Xi − Xj‖ ≤ r. The ”hitting radius” ρn(P) of an
increasing graph property P is the least r such that G(n, r) satisfies P, i.e.:

ρn(P) := min{r ≥ 0 : G(n, r) satisfies P}.
Recall that a graph is Hamiltonian if it has a Hamilton cycle (that is, a cycle that goes through all
the vertices of the graph). An obvious necessary (but not sufficient) condition for the existence of
a Hamilton cycle is that the minimum degree is at least two. In this paper we prove the following
result:

Theorem 1. P [ρn(minimum degree ≥ 2) = ρn(Hamiltonian)] → 1 as n → ∞.

This answers a question of Penrose (see [12], page 317) and provides an analogue for the random
geometric graph of a celebrated result of Ajtai, Komlós and Szemerédi [1] and independently of
Bollobás [3] on the usual random graph. Theorem 1 can be stated alternatively as saying that
if we add the edges between the points X1, . . . , Xn by order of increasing edge length then, with
probability tending to 1 as n → ∞, the resulting graph obtains its first Hamilton cycle at exactly
the same time it loses its last vertex of degree < 2. By combining Theorem 1 with Theorem 8.4
from [12] (for completeness we have repeated the relevant special case of this theorem as Theorem 4
below) we see that:
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Corollary 2. Let (rn)n be a sequence of nonnegative numbers, and write xn := πnr2
n − (ln n +

ln ln n). Then:

lim
n→∞

P [G(n, rn) is Hamiltonian ] =







0 if xn → −∞;

exp
[

−(
√

π + e−x/2)e−x/2
]

if xn → x ∈ R;
1 if xn → +∞.

.

Corollary 2 provides an analogue for the random geometric graph of a result by Komlós and
Szemerédi [8] on the limiting probability that the usual random graph is Hamiltonian.

Previously, Petit [14] showed that if (rn)n is chosen such that rn/
√

ln n/πn → ∞ then the
random geometric graph G(n, rn) is Hamiltonian with probability tending to 1. This was later
sharpened by Diaz, Mitsche and Pérez [5] who showed that the same is true whenever rn ≥
(1 + ε)

√

ln n/πn with ε > 0 arbitrary (but fixed). Our results are again an improvement and in
a sense the final word on Hamiltonicity of the random geometric graph. In Section 4 we shall
nonetheless offer an idea for future research on Hamilton cycles in the random geometric graph.

Since writing this paper it has come to our attention that both Balogh, Bollobás and Walters [2]
and Pérez and Wormald [13] have independently obtained essentially the same results at pretty
much the same time. Earlier Balogh, Kaul and Martin [10] had proved Theorem 1 in the case when
the Euclidean norm in the definition of the random geometric graph is replaced by the l∞-norm
(i.e. we add an edge between two points if their l∞-distance is less than r).

Our proof readily extends to arbitrary dimension and the lp-norm for any 1 < p ≤ ∞ (i.e. the
case where the points are i.i.d. uniform on the d-dimensional unit hypercube and ‖.‖ in the
definition of the random geometric graph is the lp-norm), but we have chosen to focus on the
two-dimensional random geometric graph with the Euclidean norm for the sake of the clarity of
our exposition. In Section3 we briefly explain the changes needed to make the proof work in the
case of arbitrary dimension and the lp-norm.

Our proof can also be adapted to show that, with probability tending to 1 as the number of
points n tends to infinity, the random geometric graph becomes pancyclic (i.e. there are cycles of
all lengths between 3 and n) at precisely the same moment it first achieves minimum degree at
least two. In Section 4 we give a brief sketch the adaptations needed to squeeze this out of our
proof.

Our proof of Theorem 1 is inspired by the analysis in [5]. Let us briefly outline the main steps
in the proof. We pick an r that is close to, but slightly less than ρn(minimum degree ≥ 2) and
we dissect the unit square into squares of side ηr for a small constant η. Next we consider an
auxiliary graph D consisting of the lower left hand corners of those squares of our dissection that
have at least 100 of the Xis in them, where we connect two points of D if their distance is less
than r′ := r(1−η

√
2). As it turns out, this auxiliary graph consists of one “giant” component and

a number of small components, that are cliques and are very far apart from each other. Moreover,
all of the Xis are within distance r of all the ≥ 100 points in some square of the auxiliary graph,
except for a few clusters of “bad” points. These bad clusters form cliques in the underlying random
geometric graph, and these cliques are far apart. We now construct a spanning tree T of the giant
component of D that has maximum degree at most 26. We increase r to ρ > r which is large
enough for the random geometric graph to have minimum degree at least two, and we construct
the Hamilton cycle while performing a closed walk on T that traveres every edge of T exactly twice
(once in each direction). Each time the walk visits a node of T, the cycle visits a fresh Xi inside
the corresponding square. While doing this we are able to make small “excursions” to eat up the
Xis in squares belonging to non-giant components of D, the bad clusters and all the other Xis.

2 The proof

Recall that a graph G = (V, E) is k-connected if |V | > k and G \S is connected for all sets S ⊆ V
of cardinality |S| < k. Clearly, having minimum degree at least k is a necessary condition for
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k-connectedness, and 2-connectedness is a necessary condition for Hamiltonicity. In our proof of
Theorem 1 we shall rely on the following result of Penrose:

Theorem 3 ([11]). For any (fixed) k ∈ N it holds that:

P [ρn(minimum degree ≥ k) = ρn(k-connected)] → 1,

as n → ∞.

Thanks to this last theorem, it suffices for us to show that P[ρn(Hamiltonian) = ρn(2-connected)] →
1 in order to prove Theorem 1. We shall also make use of another result of Penrose. The following
theorem is a reformulation of a special case of Theorem 8.4 from [12].

Theorem 4. Let (rn)n be a sequence of nonnegative numbers, and write xn := πnr2 − (ln n +
ln ln n). Then:

lim
n→∞

P [G(n, rn) has minimum degree ≥ 2] =







0 if xn → −∞;

exp
[

−(
√

π + e−x/2)e−x/2
]

if xn → x ∈ R;
1 if xn → +∞.

For V ⊆ R
2 and r ≥ 0 we shall denote by G(V, r) the (non-random) geometric graph with

vertex set V and an edge vw ∈ E(G(V, r)) iff ‖v − w‖ ≤ r. The (non-random) geometric graphs
G(V, r) have been the subject of considerable research effort and they are often also called unit
disk graphs.

For 0 < η < 1/
√

2 and r > 0 let Hη(r) denote the unit disk graph G(Pηr , r
′) with vertex set

Pηr := [0, 1]2 ∩ (ηr)Z2 (that is, Pηr is the set of all points in [0, 1]2 whose coordinates are integer
multiples of ηr) and threshold distance r′ := r(1 − η

√
2).

Now suppose that we are also given an arbitrary set V ⊆ [0, 1]2 of points. We shall call a
vertex p ∈ Hη(r) dense with respect to V if the square p + [0, ηr)2 contains at least 100 points of
V . If a vertex is not dense we will call it sparse. If all neighbours of p in Hη(r) are sparse (i.e. if
q is sparse for all q ∈ B(p, r′) ∩ Hη(r)) then we shall say that p is bad.

Let Dη(V, r) denote the subgraph of Hη(r) induced by the dense points, and let Bη(V, r)
denote the subgraph induced by the bad points. Part of the proof of Theorem 1 will be to show
that if V = {X1, . . . , Xn} and r is chosen close to, but slightly smaller than, ρn(2-connected)
then Hη(r), Dη(V, r) and Bη(V, r) have a number of desirable properties (with probability tending
to 1). This will then allow us to finish the proof of our main theorem by purely deterministic
arguments. Here is a list of these desirable properties (here and throughout the rest of the paper
“component” will always mean a connected component, and diameter will always refer to the
geometric diameter of a point set as opposed to the graph diameter):

(P1) If K is a component of Dη(V, r) then it either has (geometric) diameter diam(K) < r′ or
diam(K) > 1000r;

(P2) If K1, K2 are two distinct components of Dη(V, r) with (geometric) diameters diam(K1), diam(K2) <
r′ and p1 ∈ K1, p2 ∈ K2 then ‖p1 − p2‖ > 1000r;

(P3) If p1 ∈ K for some component K of Dη(V, r) with diam(K) < r′ and p2 ∈ Bη(V, r) is bad
then ‖p1 − p2‖ > 1000r;

(P4) If p, q ∈ Bη(V, r) are bad, then either ‖p − q‖ < r′ or ‖p − q‖ > 1000r;

(P5) If p1, p2 ∈ Dη(V, r) and ‖p1 − p2‖ < 25r and neither of p1 or p2 lies in a component of
(geometric) diameter < r′ then there is a p1p2-path in Dη(V, r) that stays inside B(p1, 100r);

(P6) Dη(V, r) has exactly one component K of (geometric) diameter diam(K) ≥ r′.

We will say that a sequence of events (An)n holds with high probability (w.h.p.) if P(An) → 1 as
n → ∞. The following proposition takes care of the probabilistic part of the proof of Theorem 1:
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Proposition 5. Set rn :=
√

ln n/πn and Vn := {X1, . . . , Xn}. If η > 0 is sufficiently small (but
fixed) then Hη(rn), Dη(Vn, rn) and Bη(Vn, rn) satisfy properties (P1)-(P6) w.h.p.

Together with the following deterministic result and the two mentioned results by Penrose,
Proposition 5 gives Theorem 1.

Theorem 6. Suppose that 0 < η < 1/
√

2, V ⊆ R
2 and r > 0 are such that Dη(V, r) and Bη(V, r)

satisfy (P1)-(P6), and that r ≤ ρ ≤ 2r is such that G(V, ρ) is 2-connected. Then G(V, ρ) is also
Hamiltonian.

We postpone the proofs of Proposition 5 and Theorem 6 and we first briefly explain how they
imply Theorem 1.

Proof of Theorem 1: Let us write rn :=
√

ln n/πn and σn := ρn(2-connected). By Theorem 3
and the fact that 2-connectedness is a necessary condition for Hamiltonicity it suffices to show
that G(n, σn) is Hamiltonian with high probability. Theorem 3 together with Theorem 4 show
that, with high probability, G(n, rn) is not 2-connected and G(n, 2rn) is 2-connected. In other
words, rn < σn ≤ 2rn with high probability. By Proposition 5 we can fix an η ∈ (0, 1/

√
2) such

that properties (P1)-(P6) hold for Hη(rn), Dη(Vn, rn), Bη(Vn, rn) with high probability, where
Vn := {X1, . . . , Xn}. Thus, with high probability, Theorem 6 applies to η, V = {X1, . . . , Xn}, r =
rn, ρ = σn, and G(n, σn) is indeed Hamiltonian with high probability. �

Our next step is to prove Proposition 5. We will say that a point or set is within s of the sides
(of [0, 1]2) if it is contained in

side(s) := {z ∈ [0, 1]2 : zx ∈ [0, s) ∩ (1 − s, 1] or zy ∈ [0, s) ∩ (1 − s, 1]},

and we will say it is within s of the corners (of [0, 1]2) if it is contained in

corner(s) := {z ∈ [0, 1]2 : zx ∈ [0, s) ∩ (1 − s, 1] and zy ∈ [0, s) ∩ (1 − s, 1]}.

The following lemma provides an observation that is pivotal in the proof of Proposition 5.

Lemma 7. Set rn :=
√

ln n/πn and Vn := {X1, . . . , Xn}. For every ε > 0 there exists an
η0 = η0(ε) > 0 such that for any fixed 0 < η < η0 the following statements hold w.h.p.:

(i) For every S ⊆ Hη(rn) with |S| > (1 + ε)πη−2 and diam(S) < 105rn, there exists a q ∈ S that
is dense wrt. Vn;

(ii) For every S ⊆ Hη(rn)∩side(105rn) with |S| > (1+ε)π
2 η−2 and diam(S) < 105rn, there exists

a q ∈ S that is dense wrt. Vn;

(iii) For every S ⊆ Hη(rn) ∩ corner(105rn) with |S| > εη−2 and diam(S) < 105rn, there exists a
q ∈ S that is dense wrt. Vn.

In the proof of Lemma 7 we shall make use of the following incarnation of the Chernoff-
Hoeffding bound. A proof can for instance be found in [12], on page 16.

Lemma 8. Let Z be a Bi(n, p)-distributed random variable, and k ≤ µ := np. Then

P(Z ≤ k) ≤ exp [−µH(k/µ)] ,

where H(x) := x ln x − x + 1.

Proof of Lemma 7: Let us choose η0 := ε/106 and fix an arbitrary 0 < η < η0. Our choice of
η0 guarantees that 4⌈2 · 105/η⌉ < εη−2/2 (we can assume w.l.o.g. that ε < 1).

Let U denote the collection of all S ⊆ Hη(rn) that satisfy the conditions for part (i). Let us
first count the number of sets in S. To this end, observe that if p ∈ S and diam(S) < 105rn then
S ⊆ p + (−105rn, 105rn)2. Notice that

∣

∣Hη(rn) ∩
(

p + (−105rn, 105rn)2
)
∣

∣ ≤ ⌈2 · 105/η⌉2,
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for any p ∈ R
2. This shows that if N(p) denotes the number of S ∈ U that contain p, then

N(p) ≤ 2⌈2·10
5/η⌉2 , (1)

and, since this constant upper bound on N(p) holds for all p ∈ Hη(rn), it follows that

|U| ≤
∑

p∈Hη(rn)

2N(p) = O(|Hη(rn)|) = O(r−2
n ) = O(n/ ln n). (2)

Now pick an arbitrary S ∈ U, and let S′ ⊆ S be the set of those q ∈ S for which q+[0, ηrn)2 ⊆ [0, 1]2.
Since S ⊆ p + (−105rn, 105rn)2 for any p ∈ S, we have that |S \ S′| ≤ 4 · ⌈2 · 105/η⌉. And hence,
by choice of η0, we have

|S′| > (1 +
ε

2
)πη−2. (3)

Let Z := |{X1, . . . , Xn} ∩ (
⋃

q∈S′ q + [0, ηr)2)| denote the (random) number of Xi that fall into

one of the squares q + [0, ηrn)2 with q ∈ S′. Then Z ∼ Bi(n, |S′|η2r2
n). Appealing to Lemma 8:

P [q is sparse for all q ∈ S] ≤ P [q is sparse for all q ∈ S
′]

≤ P [Z ≤ 99|S′|]
≤ exp[−n|S′|η2r2

nH(99/η2nr2
n)],

(4)

where H(x) = x ln x − x + 1. Now notice that, by (3)

n|S′|η2r2
nH(99/η2nr2

n) > (1 +
ε

2
)πnr2

nH(99/η2nr2
n) = (1 +

ε

2
+ o(1)) ln n, (5)

where the last equality holds by the choice of rn =
√

ln n/πn and the fact that H(x) → 1 as x ↓ 0
(note 99/(η2nr2

n) = O(1/ ln n) → 0). Combining (2), (4) and (5), the union bound now gives us
that

P [∃S ∈ U such that q sparse for all q ∈ S] ≤
∑

S∈U

P [q sparse for all q ∈ S]

≤ |U|n−1− ε
2+o(1)

= o(1),

which proves part (i).
Now let Uside ⊆ U denote the collection of all S ⊆ Hη(rn) that satisfy the conditions of part (ii)

of the lemma. Noticing that

|Hη(rn) ∩ side(105rn)| ≤ 4 · ⌈105/η⌉ · (1 + 1/ηrn) = O(1/rn) = O(
√

n/ ln n),

and reusing (1), we see that:

|Uside| ≤
∑

p∈Hη(r)∩side(105rn)

2N(p) = O(
√

n/ ln n). (6)

Now let S ∈ Uside be arbitrary, and let S′ ⊆ S be those q ∈ S for which q+[0, ηrn)2 ⊆ [0, 1]2. Again
we have |S \ S′| ≤ 4⌈2 · 105η−1⌉ < ε

2η−2, so that this time |S′| > (1 + ε
2 )π

2 η−2. The inequality (4)
is still valid and, analogously to (5), we now have n|S′|η2r2

nH(99/η2nr2
n) > (1

2 + ε
4 + o(1)) ln n.

Combining these observations with (6), the union bound thus gives:

P [∃S ∈ Uside such that q sparse for all q ∈ S] ≤ |Uside|n− 1
2− ε

4 +o(1) = o(1),

proving part (ii) of the lemma.
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Finally, let Ucorner denote the collection of sets S ⊆ Hη(rn) that satisfy the conditions of
part (iii) of the lemma. Notice that |Hη(rn) ∩ corner(105rn)| ≤ 4⌈105η−1⌉2 = O(1). Therefore,
also:

|Ucorner| ≤
∑

p∈Hη(rn)∩corner(105rn)

2N(p) = O(1). (7)

Pick an arbitrary S ∈ Ucorner and let S′ ⊆ S be the set of those q ∈ S for which q+[0, ηrn)2 ⊆ [0, 1]2.
Then |S′| > ε

2η−2. Again the inequality (4) is still valid and, analogously to (5), we now have
n|S′|η2r2

nH(99/η2nr2
n) > ( ε

2 + o(1)) ln n. Combining this with (7), the union bound gives:

P [∃S ∈ Ucorner such that q sparse for all q ∈ S] ≤ |Ucorner|n− ε
2+o(1) = o(1).

This proves part (iii) of the lemma. �

We say that a set A ⊆ R
2 is a Boolean combination of the sets A1, . . . , An ⊆ R

2 if A can be con-
structed from A1, . . . , An by means of any number of compositions of the operations intersection,
union and complement. Recall that a halfplane is a set of the form H(a, b) := {z ∈ R

2 : z · a ≤ b}
for some vector a ∈ R

2 \ {0} and constant b ∈ R.

Lemma 9. There exists a constant C > 0 such that the following holds for all η, r > 0. For every
A ⊆ R

2 with diam(A) < 105rn that is a Boolean combination of at most 1000 halfplanes and balls
of radius ≤ r, we have that |A ∩ Hη(r)| ≥ area(A ∩ [0, 1]2)/(ηr)2 − Cη−1.

Proof: Set C := 109, and let η, r > 0 be arbitrary. Let A ⊆ R
2 be an abitrary set that satisfies

the two conditions from the lemma. Let

A′ := {z ∈ R
2 : B(z; ηr

√
2) ⊆ A ∩ [0, 1]2}.

In other words, A′ ⊆ A ∩ [0, 1]2 is the set of all z that are distance at least ηr
√

2 away from the
boundary of A ∩ [0, 1]2. Observe that if q + [0, ηr)2 intersects A′ then it is completely contained
in A. Because the squares q + [0, ηr)2 : q ∈ Hη(r) are disjoint and cover [0, 1]2 this shows that

|A ∩ Hη(r)| ≥ area(A′)/(ηr)2.

It thus suffices to bound the area of A∩[0, 1]2\A′. The set A∩[0, 1]2 is also a Boolean combination of
halfplanes and balls of radius ≤ r, this time at most 1004 of them. Let H1 = H(a1, b1), . . . , Hm =
H(am, bm) and B1 := B(z1; s1), . . . , Bk = B(zk; sk) denote the halfplanes and disks that A∩ [0, 1]2

is a Boolean combination of, where m + k ≤ 1004 and s1, . . . , sk ≤ r. We can assume w.l.o.g. that
‖ai‖ = 1 for i = 1, . . . , m. Pick an arbitrary z0 ∈ A. Because diam(A) < 105r we have A ⊆
B(z0, 105r). Let us now observe that if z ∈ (A ∩ [0, 1]2) \ A′ then z lies within distance ηr

√
2 of

the boundary of one of the sets Hi or one of the Bj . This implies that

A ∩ [0, 1]2 \ A′ ⊆ H ′
1 ∪ · · · ∪ H ′

m ∪ B′
1 ∪ · · · ∪ B′

k,

where H ′
i := B(z0, 105r)∩H(ai, bi +ηr

√
2)\H(ai, bi−ηr

√
2) for i = 1, . . . , m and B′

j := B(zj ; sj +

ηr
√

2) \ B(zj ; sj − ηr
√

2) for j = 1, . . . , k. Now notice that area(H ′
i) ≤ (2 · 105r) × (2ηr

√
2) =

4 · 105ηr2
√

2 and area(B′
i) = π((si + ηr

√
2)2 − (si − ηr

√
2)2) = 4πsiηr

√
2 ≤ 4πηr2

√
2. Thus

area(A ∩ [0, 1]2 \ A′) ≤ 1004 · 4 · 105ηr2
√

2 ≤ Cηr2,

which gives |A ∩ Hη(r)| ≥
(

area(A ∩ [0, 1]2) − Cηr2
)

/(ηr)2 = area(A ∩ [0, 1]2)/(ηr)2 − Cη−1 as
required. �

Proof of Proposition 5: Set Vn = {X1, . . . , Xn}, rn =
√

ln n/πn. We will show how Lemma 7
can be applied to show that each of the statements (P1)-(P6) hold with high probability for
Hη(rn), Dη(Vn, rn), Bη(Vn, rn) if η is chosen sufficiently small.
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Set ε := 1/1000. Fix an 0 < η < η0(ε), where η0 is as in Lemma 7, that is also small enough
for the following three inequalities to hold:

(1 +
1

100
)(1 − η

√
2)2π − Cη > (1 + ε)π,

(1 +
1

100
)(1 − η

√
2)2

π

2
− Cη > (1 + ε)

π

2
,

(1 − η
√

2)2
π

4
− Cη > ε,

(8)

where C is the constant from Lemma 9.
For any r > 0 (and η, ε as chosen above) let U(r) denote the set of all S ⊆ Hη(r) for which

diam(S) < 105r and either |S| > (1 + ε)πη−2, or S ⊆ side(105r) and |S| > (1 + ε)π
2 η−2, or

S ⊆ corner(105r) and |S| > εη−2. By Lemma 7 it holds with high probability that any S ∈ U(rn)
contains a point that is dense wrt. Vn. To prove the proposition it thus suffices to show that for
any V ⊆ [0, 1]2 and 0 < r < 10−10 that are such that each S ∈ U(r) contains a point that is
dense wrt. V the properties (P1)-(P6) hold for Hη(r), Dη(V, r) and Bη(V, r) (with η, ε as chosen
above). Let us thus pick such a V ⊆ [0, 1]2 and 0 < r < 10−10 for which every S ∈ U(r) contains
a point that is dense wrt. V .
Proof that (P1) holds: Aiming for a contradiction, suppose there is some component K of
Dη(n, r) with (geometric) diameter r′ ≤ diam(K) ≤ 1000r. Let us pick points pL, pR, pT , pB ∈ K,
where pL is a point of K with smallest x-coordinate amongst all points of K, pR is a point of K

with biggest x-coordinate, pB is a point of K with smallest y-coordinate and pT is a point of K

with biggest y-coordinate (note these points need not be distinct or unique). See Figure 1 for an
illustration. Since diam(K) ≥ r′, we have either (pR)x − (pL)x ≥ r′/

√
2 or (pT )y − (pB)y ≥ r′/

√
2.

Without loss of generality, let us assume that (pR)x − (pL)x ≥ r′/
√

2. For z ∈ R
2 and s ≥ 0 let us

set:

BL(z, s) := {z′ ∈ B(z, s) : z′x < zx}, BR(z, s) := {z′ ∈ B(z, w) : z′x > zx},
BB(z, s) := {z′ ∈ B(z, r′) : z′y < zy}, BT (z, s) := {z′ ∈ B(z, r′) : z′y > zy}.

Now define
A := BL(pL; r′) ∪ BR(pR, r′) ∪ BB(pB, r′) ∪ BT (pT , r′),

and let S := A ∩ Hη(r) denote the set of all points of Hη(r) that fall inside A. Let us observe
that, since K is a component of Dη(n, r), the set S cannot contain any dense q. We also note that
diam(A) < 105r and A is a Boolean combination of ≤ 1000 halfspaces and balls of radius ≤ r.

Let us define

B′
B := {z ∈ BB(pB, r′) : (pL)x < zx < (pR)x}, B′

T := {z ∈ BT (pT , r′) : (pL)x < zx < (pR)x}.

Then the sets BL(pL, r′), BR(pR, r′), B′
B , B′

T are disjoint (see Figure 1). Now observe that, be-
cause (pR)x − (pL)x > r′/

√
2 and (pL)x ≤ (pT )x ≤ (pR)x, the area of B′

T is at least a fraction
(r′/

√
2)/(2r′) = 1/2

√
2 of the area of BT (pT , r′). Similarly B′

B has at least 1/2
√

2 of the area of
BB(pB, r′). In other words, area(B′

B), area(B′
T ) ≥ 1

4
√

2
π(r′)2, and thus

area(A) ≥ (1 +
1

2
√

2
)π(r′)2. (9)

First suppose that A is completely contained in [0, 1]2. In this case, Lemma 9 tells us that

|S| ≥ area(A)/(ηr)2 − Cη−1

≥ (1 +
1

2
√

2
)(1 − η

√
2)2πη−2 − Cη−1

> (1 + ε)πη−2,

where the last inequality holds by (8). We see that S ∈ U(r). But then there must be a dense
q ∈ S, which contradicts that K is a component of Dη(V, r).
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pT

pB

pL

pR
BL(pL, r′)

B′
T

B′
B

≥ r/
√

2

BT (pT , r′)

BB(pB , r′)

BR(pR, r′)

Figure 1: A has area at least (1 + 1
2
√

2
)π(r′)2.

Now assume that one of the points pL, pR, pB, pT is within distance r′ of one of the sides of
[0, 1]2, but none of these points is an element of corner(r′). Then certainly S ⊆ side(105r). Also
note that at least one of B′

B, B′
T must be completely contained in [0, 1]2. Moreover, at least

half the area of BL(pL, r′) ∪ BR(pR, r′) lies in [0, 1]2. (If the points are close to {0} × [0, 1] then
BR(pR, r′) ⊆ [0, 1]2. If they are close to {1} × [0, 1] then BL(pL, r′) ⊆ [0, 1]2. If they are close to
[0, 1] × {0} then the top halves of BL(pL, r′) and BR(pR, r′) lie completely in [0, 1]2. If they are
close to [0, 1]×{1} then the bottom halves of BL(pL, r′) and BR(pR, r′) are completely contained
in [0, 1]2.) Hence

area(A ∩ [0, 1]2) ≥ (1 +
1

2
√

2
)
π

2
(r′)2.

Using Lemma 9 and (8) we find:

|S| ≥ area(A ∩ [0, 1]2)/(ηr)2 − Cη−1

≥ (1 +
1

2
√

2
)(1 − η

√
2)2

π

2
η−2 − Cη−1

> (1 + ε)
π

2
η−2.

Again we see that S ∈ U(r). So again at least one q ∈ S must be dense, which again contradicts
that K was a component of Dη(V, r).

Finally assume that one of the 4 points is an element of corner(r′). Clearly S ⊆ corner(105r).
Also note that at least one of B′

B, B′
T is completely contained in A ∩ [0, 1]2. Hence, by Lemma 9

and (8):

|S| ≥ area(A ∩ [0, 1]2)/(ηr)2 − Cη−1

≥ (1 − η
√

2)2
1

4
√

2
η−2 − Cη−1

> εη−2.

And again this implies S ∈ U(r), which in turn implies the existence of a dense q ∈ S, which
cannot be. We can thus conclude that no component K of diameter r′ ≤ diam(K) ≤ 1000r exists
in Dη(V, r).
Proof that (P2) holds: Suppose that K1, K2 are distinct components of Dη(V, r), both with
diameter ≤ r′, such that there exists a point in K1 and a point in K2 with distance at most 1000r
between them. Now set K := K1 ∪K2. Then r′ < diam(K) ≤ 1002r (to see the lower bound, note
that any point in K1 has distance > r′ to any point of K2 as they are in distinct components).
Let pL ∈ K be a point of smallest x-coordinate, let pR ∈ K be a point of largest x-coordinate,
let pB ∈ K be a point of smallest y-coordinate, let pT be a point of largest y-coordinate and set
A := BL(pL; r′) ∪ BR(pR, r′) ∪ BB(pB, r′) ∪ BT (pT , r′). Then S := A ∩ Hη(r) cannot contain any
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dense point (if, for example, BL(pL, r′) were to contain a dense point, then this point would lie
in the same component of Dη(V, r) as pL and have a smaller x-coordinate than pL). We can now
proceed as in the proof of (P1) to arrive at a contradiction.
Proof that (P3) holds: Suppose that K1 is a component of Dη(V, r) with diam(K1) < r′ and
that p ∈ Bη(V, r) is a bad point that is at distance < 1000r to some point of K1. Let us set
K := K1 ∪{p}. Then r′ < diam(K) < 1001r (to see the lower bound, note that any bad point has
distance > r′ to any dense point). Defining pL, pR, pB, pT , A and S as in the proofs of (P1) and
(P2), we see that S again cannot contain any dense point. We again arrive at a contradiction by
proceeding as in the proof of (P1).
Proof that (P4) holds: Suppose that p1, p2 ∈ Bη(V, r) are bad and that r′ ≤ ‖p1−p2‖ ≤ 1000r.
Setting K := {p1, p2} and repeating the same argument again gives a contradiction.
Proof that (P5) holds: Suppose there exist p1, p2 ∈ Dη(n, r) with ‖p1 − p2‖ < 25r such
that both points are in components of diameter ≥ r′, and there is no p1p2-path that stays inside
B(p1, 100r). By (P1) p1, p2 must each be in a component of diameter > 1000r. For k = 25, . . . , 70
let Sk := p1 +[−kr, kr]2 denote a square of side length 2kr with center p1, and let Rk := Sk \Sk−1

for k = 26, . . . , 70. Consider the subgraph D̃ of Dη(V, r) induced by the points of Dη(V, r) that lie

inside S70. Observe that p1 and p2 must lie in distinct components K̃1, K̃2 of D̃ (otherwise there
is a p1p2-path that stays inside S70 ⊆ B(p1, 100r)) and that Rk must contain a point of K̃1 and of
K̃2 for each k = 26, . . . , 70 (otherwise, if K̃j misses Rk for k ≥ 26, then, since pj ∈ S25, K̃j is also a
component of the entire graph Dη(V, r) which has diameter < 1000r and contains pj , contradicting
the earlier observation that the diameter of the component that contains pj is > 1000r). See

Figure 2 (the left part). Pick an arbitrary 26 ≤ k ≤ 70. Let q1 ∈ K̃1, q2 ∈ K̃2 be two points inside

p1

p2

q1

q2

Figure 2: Two points p1, p2 at small distance, in large components, but without a short path
between them.

Rk. Provided that (p1)x, (p1)y 6∈ ((k−1)r, (k−1 + 1/2
√

2)r)∪ (1− (k−1 + 1/2
√

2)r, 1− (k−1)r),
it is easy to construct a sequence of squares T1, . . . , Tm ⊆ Rk ∩ [0, 1]2, each of side length r′/2

√
2,

such that q1 ∈ T1 and q2 ∈ Tm, and Ti ∩ Ti+1 6= ∅ for all i = 1, . . . , m − 1 (see Figure 2, the right
part). Observe that every point of Ti is at distance ≤ r′ of every point of Ti+1. Hence, if every Ti

were to contain at least one point of Dη(V, r), then there would be a path between q1 and q2 in D̃.

But this cannot be since K̃1 and K̃2 are distinct components of D̃. Hence, for each 26 ≤ k ≤ 70
for which (p1)x, (p1)y 6∈ ((k − 1)r, (k − 1 + 1/2

√
2)r) ∪ (1 − (k − 1 + 1/2

√
2)r, 1 − (k − 1)r) (note

there are at most 2 values of k for which this fails), there is at least one square T ⊆ Rk of side
length r′/2

√
2 that does not contain any dense point.

For every 26 ≤ k ≤ 70 for which this is possible, pick such a square, let A denote the union of
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these squares, and set S := A ∩ Hη(r). Clearly diam(A) < 105r and A is a Boolean combination
of less than 1000 halfplanes and balls of radius ≤ r′. Lemma 9 and (8) thus give:

|S| ≥ area(A)/(ηr)2 − Cη−1

=
43

8
(1 − η

√
2)2η−2 − Cη−1

> (1 + ε)πη−2.

But then some q ∈ S must be dense, contradiction.
Proof that (P6) holds: Let us call a point p ∈ Dη(V, r) large if it is in a component of diameter
≥ r′. We first claim that any square A ⊆ [0, 1]2 of side length 5r contains a large point. To see
this, pick such a square A, remove a vertical strip of width r from the middle, and denote the two
remaining rectangles of dimensions 2r×5r by A1, A2. Let Sj := Aj ∩Hη(r) for j = 1, 2. Then, by
Lemma 9 and (8) we have |Sj | ≥ 10η−2 − Cη−1 > (1 + ε)πη−2. Hence, each Sj contains at least
one dense point. A dense point in S1 and a dense point in S2 have distance between r and 5r

√
2,

so by (P2) at least one of them is large. So the claim holds.
Now pick two arbitrary large points p1, p2 of Dη(V, r). It is easy to construct a sequence

T1, . . . , Tm of squares of side 5r such that Ti ⊆ [0, 1]2 for i = 1, . . . , m, p1 ∈ T1, p2 ∈ Tm and
Ti ∩ Ti+1 6= ∅ for i = 1, . . . , m − 1. Observe that any point in Ti and any point in Ti+1 have
distance < 25r. By (P5) every large point of Ti is in the same component as every large point
in Ti+1, and, since every Ti has at least one large point, this gives that p1 and p2 lie in the same
component.

Since p1, p2 were arbitrary large points, this shows that all large points lie in the same com-
ponent. There is at least one large point (inside any square of side 5r), so that there indeed is
exactly one component of diameter ≥ r′. �

It now remains to prove Theorem 6. We will make use of the following observation that is
essentially to be found in [5], but is not stated explicilty there. For completeness we include the
(short) proof.

Lemma 10. Any connected unit disk graph has a spanning tree of maximum degree ≤ 26.

Proof: Let G = G(V, r) be a connected unit disk graph. For i, j ∈ Z set Vi,j := V ∩ [ir/
√

2, (i +
1)r/

√
2)× [jr/

√
2, (j + 1)r/

√
2). Observe that the vertices of Vi,j form a clique in G for each i, j,

and that there can be an edge vw in G between w ∈ Vi,j and v ∈ Vk,l only if |i − k|, |j − l| ≤ 2.
We construct a subgraph T of G as follows:

• For each i, j such that Vi,j 6= ∅ we delete all edges between distinct vertices of Vi,j except
for a path going through all its vertices.

• For each pair (i, j) 6= (k, l) such that there exists an edge between a vertex in Vi,j and a
vertex in Vk,l we delete all but one of these edges.

Observe that if vw is an edge of G then there is a vw-path in T . Hence T is a spanning subgraph
of G. It is also clear that T has maximum degree at most 26, because any vertex is joined to at
most 2 vertices in the same Vi,j and at most 24 vertices in different Vi,js. If T is not a tree then
we can delete additional edges to make it into a tree. �

Proof of Theorem 6: Let 0 < η < 1/
√

2, V ⊆ R
2 and r > 0 be such that Hη(r), Dη(V, r)

and Bη(r) satisfy properties (P1)-(P6) and suppose that r ≤ ρ ≤ 2r is such that G(V, ρ) is
2-connected. Let us enumerate the components of Dη(V, r) and the components of Bη(V, r) as
K1, . . . , Km, where K1 is the unique component of Dη(V, r) of geometric diameter ≥ 1000r and
all other Ki have diameter < r′ (observe that by (P4) all components of Bη(V, r) have geometric
diameter < r′). For p ∈ Hη(r) denote Vp := V ∩ (p + [0, ηr)2) and for i = 1, . . . , m let us set
VKi :=

⋃

p∈Ki
Vp. Observe that if pq is an edge of Hη(r) then vw is an edge of G(V, ρ) for all

v ∈ Vp, w ∈ Vq (if v1 ∈ Vp1 , v2 ∈ Vp2 with ‖p1 − p2‖ < r′ = r(1 − ηr
√

2) then ‖v1 − v2‖ ≤
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‖p1 − p2‖ + ‖(v1 − p1) − (v2 − p2)‖ < r′ + ηr
√

2 = r). Amongst other things this shows that VKi

induces a clique in G(V, ρ) for i = 2, . . . , m.

Claim 11. For each i = 2, . . . , m for which |VKi | > 0 there are paths P i
1, P

i
2 in G(V, ρ) such that:

(i) P i
1, P

i
2 both have one endvertex in VKi and one endvertex in VK1 and all their other vertices

in V \ ⋃m
j=1 VKj ;

(ii) P i
1 and P i

2 are vertex-disjoint if |VKi | ≥ 2 and if VKi = {v} they share only the vertex v but
no other vertices;

(iii) There is a p ∈ Ki such that both P i
1 and P i

2 are contained in the disk B(p, 6r).

Proof of Claim 11: If |VKi | ≥ 2 then, since G(V, ρ) is 2-connected, we can pick distinct vertices
a1, a2 ∈ VK1 and distinct b1, b2 ∈ VKi and a a1b1-path P1 and a a2b2-path P2 such that P1 and P2

are vertex-disjoint (exercise 4.2.9 on page 173 of [15]). If |VKi | = {b1}, then we can pick distinct
vertices a1, a2 ∈ VK1 and a a1b1-path P1 and a a2b1-path P2 whose only common vertex is b1

(exercise 4.2.8 on page 173 of [15]). If |VKi | = 1 then we set b2 = b1 in the rest of the proof.
By switching to subpaths if necessary, we can assume that aj is the only vertex of VK1 on Pj

and bj is the only vertex of VKi on Pj for j = 1, 2. Let p1, p2 ∈ Ki be such that bj ∈ Vpj for
j = 1, 2. We will now show that we can assume that Pj ⊆ B(pj ; 5r) for j = 1, 2 (which implies
that both are contained in B(p1, 6r) as ‖p1 − p2‖ ≤ r′ < r).

Suppose that P1 is not contained in B(p1; 5r). Write P1 = w0w1w2 . . . wk where w0 = b1 and
wk = a1. Let j be the first index such that ‖wj − p1‖ > 2r. Observe that

‖wj − p1‖ ≤ ‖wj−1 − p1‖ + ρ ≤ 4r.

Let p ∈ Hη(r) be such that wj ∈ Vp. Since ‖wj −p1‖−‖p−wj‖ ≤ ‖p−p1‖ ≤ ‖wj −p1‖+‖p−wj‖
and ‖wj − p‖ < ηr

√
2 we have

2r′ < ‖p − p1‖ < 5r.

Depending on whether Ki is a small component of Dη(V, r) or a component of Bη(V, r), by either
(P3) or (P4) we have that p cannot be bad. Hence there is a dense q ∈ Dη(V, r) with ‖p−q‖ ≤ r′.
Observe that ‖q − p1‖ ≥ ‖p − p1‖ − ‖q − p‖ > r′. Either (P2) or (P3) (depending on whether
Ki is a a component of Bη(V, r) or a small component of Dη(V, r)) now gives that q ∈ K1. Let us
pick an a′

1 ∈ Vq that is distinct from a2 (since q is dense such a a′
1 certainly exists). Then wja

′
1 is

an edge of G(V, ρ), and
‖a′

1 − p1‖ ≤ ‖wj − p1‖ + ‖a′
1 − wj‖ ≤ 5r.

Hence the path P ′
1 = v1w1 . . . wja

′
1 is as required. The same argument shows that we can also

assume that P2 ⊆ B(p2, 5r). �

Part (iii) of Claim 11 implies the following:

Claim 12. P i
j and P i′

j′ are vertex disjoint for all i 6= i′ ∈ {2, . . . , m} and j, j′ ∈ {1, 2}.

Proof of Claim 12: Suppose there exists a common vertex v. By part (iii) of Claim 11 there
exist p ∈ Ki, p

′ ∈ Ki′ with ‖p− p′‖ ≤ ‖p− v‖ + ‖p′ − v‖ < 12r. But this contradicts either (P2),
(P3) or (P4), depending on what kind of components Ki, Ki′ are. �

For i = 2, . . . , m, and j = 1, 2, let ai
j denote the endpoint of P i

j in VK1 and let bi
j denote the

endpoint of P i
j in VKi , and let pi

1, p
i
2 ∈ K1 be such that ai

j ∈ Vpi
j
. Since ‖pi

1 − pi
2‖ < 25r, there is

a pi
1p

i
2-path Pi in K1 such that Pi ⊆ B(pi

1, 100r) by (P5).

Claim 13. If i 6= i′ then Pi and Pi′ are vertex-disjoint.
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Figure 3: A clean-up path

Proof of Claim 13: Suppose that some q ∈ D(V, r) lies on both paths. There is a p ∈ Ki such
that ‖p−pi

1‖ ≤ ‖p−ai
1‖+‖ai

1−pi
1‖ ≤ 6r+ηr

√
2. Hence ‖p−q‖ < ‖q−pi

1‖+7r ≤ 107r. Similarly,
there is a p′ ∈ Ki′ such that ‖p′ − q‖ < 107r. But then ‖p − p′‖ < 214r, which contradicts one of
(P2), (P3) or (P4) (depending on what kind of components Ki, Ki′ are). �

To each vertex v ∈ V \
(

⋃

i=1,...,m VKi ∪
⋃

i=2,...,m,
j=1,2

P i
j

)

we will attach a label as follows. For

such a v there is a p ∈ Hη(r) such that v ∈ Vp. Note that p cannot be bad (otherwise we would
have v ∈ VKi for some i). Hence there is at least one dense q ∈ Dη(V, r) with ‖p − q′‖ < r′.
Pick an arbitrary such q and label v with q (note vw is an edge of G(V, ρ) for all w ∈ Vq). For
a dense q ∈ Dη(V, r) let us set Lq := {w ∈ V : w is labelled q} and for i = 1, . . . , m will write
LKi :=

⋃

q∈Ki
Lq.

Let us observe that for any dense q ∈ Dη(V, r) and any 7 points v1, . . . , v7 ∈ Vq there is a
v1v7-path that contains the vertices of Lq and the vertices v1, . . . , v7 but no other vertices. This
is because all vertices labelled q are adjacent to all vertices of Vq and the vertices labelled q can
be partitioned into 6 cliques, since the vertices labelled q all lie inside the disc B(q, r′) and this
disk can be dissected into 6 sectors of 60 degrees (each of which has geometric diameter r′)– see
Figure 3. We will call such a path a clean-up path (at q).

Claim 14. For i = 2, . . . , m and each q ∈ Pi and every pair v, w ∈ Vq, there exists a vw-path
P i

v,w in G(V, ρ) that visits all vertices of P i
1 , P

i
2, VKi and LKi , and at most four vertices from Vp

for each p ∈ Pi, but no other vertices.

Proof of Claim 14: Let us write Pi = q1 . . . , qN , where q = qj for some 1 ≤ j ≤ N and
ai
1 ∈ Vq1 , a

i
2 ∈ VqN . We can assume that v 6= ai

2 and w 6= ai
1, by relabelling if necessary.

First suppose that bi
1 = bi

2. In this case we must have VKi = {bi
1}. But then Ki must consist

of bad points and LKi = ∅. We construct the path P = P i
v,w as follows. Starting from v we go to

a vertex vj−1 ∈ Vqj−1 , from there to vj−2 ∈ Vqj−2 and so on until v1 ∈ V1, where we make sure to
pick v1 = ai

1. Next we follow P i
1 to bi

1 = bi
2. (If j = 1 and v = ai

1 then we immediately embark on
P i

1. If j = 1 and v 6= ai
1 then we first move from v to ai

1 and then embark on P i
1). Now we follow

P i
2 to ai

2. If it happens that j = N and w = ai
2 then we are done. If j = N and w 6= ai

2 we jump
from ai

2 to w and we are done. Otherwise we move from ai
2 to a vN−1 ∈ VqN−1 , from there to a

vN−2 ∈ VqN−2 and so on until vj ∈ Vqj , where we make sure to pick vj = w.
Now assume bi

1 6= bi
2. For each q ∈ Ki such that |Lq| > 0, we pick 7 vertices in Vq different

from bi
1, b

i
2 (there exist 7 such vertices, because q occurs as a label and is therefore dense) and

construct the corresponding clean-up path. We now construct the path P i
v,w as follows. We start
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by going from v to bi
1 in the same way as above. Since VKi is a clique, we can start from bi

1, jump
to an endvertex of the first clean-up path, follow it, jump from its other endvertex to an endvertex
of another clean-up path, follow that path and so on until the last clean-up path. We then follow
a path trough the remaining vertices of VKi , arriving at bi

2. Finally we follow P i
2 to ai

2, and go
from ai

2 back to w in the same way as above. �

By Lemma 10 there exists a spanning tree T of K1 with maximum degree at most 26. Let
W = q0 . . . qN (with q0 = qN ) be a closed walk on T that traverses every edge exactly twice (once
in each direction). Such a walk can for instance be obtained by tracing the steps of a depth-first
search algorithm on T. Observe that W visits each node q ∈ K1 at most 26 times, since the
maximum degree of T is at most 26. We shall now describe a construction of a Hamilton cycle
in G(V, ρ). It is convenient to consider ”timesteps” t = 0, . . . , N , where we envisage ourselves
performing the walk W while at the same time constructing the cycle C. At the beginning of
timestep t, the cycle C under construction is always at a vertex v ∈ Vqt and at the end of timestep
t < N we are at a vertex w ∈ Vqt+1 . We start the cycle from an arbitrary vertex α0 ∈ Vq0 . At the
beginning of timestep t we are in some vertex v ∈ Vqt . We now apply the following rules at each
timestep t = 0, . . . , N :

Rule 1 If it is the first time W visits qt (i.e. qt is distinct from q0, . . . , qt−1), and qt lies on Pi for
some i = 2, . . . , m, and it is the first vertex of Pi that occurs on W then we pick an arbitrary
w ∈ Vqt \ {v} and we follow the path P i

v,w from v to w. This timestep has not finished yet.
We next apply either Rule 2 or Rule 3 (whichever applies).

Rule 2 If it is not the last time W visits qt, then we simply pick a not yet visited w ∈ Vqt+1 and go
there. End of timestep t.

Rule 3 If it is the last time that W visits qt (i.e. qt is distinct from qt+1, . . . , qN) then we do the
following. We are currently in a vertex v ∈ Vqt . Pick vertices v1, . . . , v6 ∈ Vqt that have not
been visited yet, and follow a clean-up path between v and v6 that visits all vertices labelled
qt and v1, . . . , v6, but no other vertices. Now we continue by visiting all vertices of Vqt that
have not yet been visited. Finally, provided t < N , we pick a not yet visited w ∈ Vqt+1

and go to w. If t = N , then we go to the initial vertex α0, completing the cycle. End of
timestep t.

Let us now explain why this construction works. At each timestep t the Rules 1-3 require unused
vertices in Vqt , so we need to argue amongst other things that we never run out of vertices. Pick
an arbitrary q ∈ K1. By Claim 13 there is at most one 2 ≤ i ≤ m such that q ∈ Pi. Rule 1 is
applied exactly once to a p ∈ Pi, and when that happens at most 4 new vertices of Vq are used.
Rule 2 is applied at most 25 times to q, and each time one new vertex of Vq is used. Thus, at the
start of the timestep when W visits q for the last time, at least 100 − 4 − 25 = 71 vertices of Vq

are left, which is more than enough to construct the clean-up path. So we never get stuck.
We still need to argue that our construction produces a Hamilton cycle. Recall that V can

be partitioned into the sets VKi , LKi : i = 1, . . . , m and P i
j \ {ai

j, b
i
j} : i = 2, . . . , m, j = 1, 2 (by

construction of VKi and LKi and by Claim 12). Consider an arbitrary v ∈ V . If v ∈ P i
j \ {ai

j, b
i
j}

for some i = 2, . . . , m, j = 1, 2, then C visits v exactly one, namely in the time step when W first
visits a vertex of Pi. Similarly, if v ∈ VKi or if v ∈ LKi for some i = 2, . . . , m, then C visits v
exactly once, namely in the time step when W first visits a vertex of Pi. If v ∈ LK1 then C visits
it exactly once, namely at the timestep when W visits q for the last time where q ∈ K1 is such
that v is labelled q. It is also clear that C visits every vertex v ∈ VK1 exactly once (in Rules 1
and 2 we always take new vertices from Vq , and when Rule 3 is finally applied to q we make sure
to visit all remaining vertices of Vq). Thus, C visits every v ∈ V exactly once and, since in the
very end we reconnect to the initial vertex α0, it is a Hamilton cycle as required. �
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3 Extension to other norms and higher dimensions

In this section we shall briefly sketch the changes needed to make proof of Theorem 1 work in the
case when X1, X2, . . . are independent, uniform random points from [0, 1]d with d ≥ 2 arbitrary
and when ‖.‖ in the definition of the random geometric graph is the lp-norm for some 1 < p ≤ ∞.
That is,

Theorem 15. For any d ≥ 2 and 1 < p ≤ ∞ the following holds. If we pick X1, . . . , Xn ∈ [0, 1]d

i.i.d. uniformly at random and we add the edges XiXj by order of increasing lp norm of Xi − Xj

then, with probability tending to 1 as n → ∞, the resulting graph gets its first Hamilton cycle at
precisely the same time it loses its last vertex of degree less than two.

We should perhaps remark that the restriction to the lp-norm with 1 < p ≤ ∞ is needed only
because it is imposed by the results of Penrose that we invoke in our proofs (cf. Theorem 8.4 and
13.17 of [12]). These results of Penrose show a notable difference between the case when the points
X1, . . . , Xn are chosen uniformly at random from the unit hypercube and the case when they are
chosen from the d-dimensional torus (i.e. if we identify opposite facets of the unit hypercube). The
restriction to lp-norms with 1 < p ≤ ∞ is imposed by Penrose for the unit hypercube (but not for
the torus) to deal with the technical difficulties that arise from “boundary effects”.

Most of the proofs go through almost unaltered if we change the relevant constants etc. in the
following way. When a square appears in the proofs for the 2-dimensional, Euclidean case, it should
usually be replaced by a d-th power. Instead of area(.) we need to put vol(.), the d-dimensional
volume. Whenever the constant π occurs it should be replaced by θ := vol(B(0, 1)), the volume
of the unit ball wrt. the lp-norm. Wherever the constant

√
2 appears, it should be replaced by

d1/p = diam([0, 1]d), the diameter of the d-dimensional hypercube as measured by the lp-norm
(here we interpret 1/∞ as 0, so that d1/∞ = 1). For example, we now set r′ := r(1 − ηd1/p).
Instead of the numbers 105, 1000, 100, 25 we put suitably chosen large constants. In particular, in
the definition of Hη(r), Dη(V, r), Bη(V, r) a point of p ∈ Hη(r) is dense if the cube p + [0, ηr)d

contains at least K points for a suitably chosen constant K (that will have to be larger than 100
for some choices of d, p).

In the statement and proof of (the analogues of) Proposition 5 and Lemma 7 for the general
case we can put

rn :=

(

(1 − δ)

(

2d−1

dθ

)

ln n/n

)1/d

,

where δ = δ(ε) is a suitably chosen small constant. It can be read off from Theorem 8.4
in [12], together with Theorem 13.17 in [12] (the version of Theorem 3 for arbitrary dimen-
sion and the lp-norm), that rn < ρn(2-connected) < 2rn. We should perhaps remark that,
although it is possible to have δ tend to 0 in a suitable way, it cannot be disposed of alto-
gether. This is because (c.f. Theorem 8.4 in [12]) the last vertex of degree < 2 disappears when

r =
(

(2d−1

dθ ln n + cd,p ln ln n + O(1))/n
)

1
d

where cd,p is a constant that is negative for some choices

of d, p.
In the higher-dimensional analogue of Lemma 7 we need to distinguish additional subcases to

deal with the situation when S is close to a k-dimensional face of [0, 1]d, for k = 1, . . . , d − 1.
Let sidek(s) denote the set of all z ∈ [0, 1]d that have k coordinates in [0, s) ∪ (1 − s, 1]. Then

|Hη(rn) ∩ sidek(Krn)| = O(r
−(d−k)
n ), and also |Uk| = O(r

−(d−k)
n ) = O((n/ ln n)(d−k)/d), where Uk

is the collection of all sets S ⊆ Hη(r) ∩ sidek(Kr) with diameter at most Kr. The argument in
the proof of Lemma 7 thus shows that each S ∈ Uk with |S| > (1 + ε) d−k

2d−1 θη−d contains a dense
point.

Lemma 9 and its proof essentially go through unaltered if we replace area(.) by the d-dimensional
volume vol(.),

√
2 by d1/p, η−2 by η−d and η−1 by η−(d−1).

In the proof of (P1), we now pick 2d vectors from K, two for each coordinate. For i = 1, . . . , d
we let p−i resp. p+

i be a point of smallest resp. largest i-th coordinate. We set A :=
⋃

i B−
i (p−i , r′)∪

B+
i (p+

i , r′), where B−
i (z, s) := {z′ ∈ B(z, s) : (z′)i < zi}, B+

i (z, s) := {z′ ∈ B(z, s) : (z′)i > zi},
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and we set S := A ∩ Hη(rn). Again it is clear that S cannot contain any dense point if K is
a component. This time here must exist an 1 ≤ j ≤ d such that p+

j − p−j > r′/d1/p. We now
need to consider the case when one of these 2d points is in sidek(r′) but none lies in sidek+1(r′).
Wlog. suppose the points are close to the face {z ∈ [0, 1]2 : z1 = · · · = zk = 0}. First suppose
that j ≤ k. The we can assume (w.l.o.g.) that j = 1. We see that A ∩ [0, 1]2 contains A1 and A2,
where

A1 := {z ∈ B(p+
1 , r′) : zi > (p+

1 )i for i = 1, . . . , k}, and
A2 := {z ∈ B(p+

2 , r′) : (p−1 )1 < z1 < (p+
1 )1, and zi > (p+

2 )i for i = 2, . . . , k}.

Note that A1 and A2 are disjoint, that vol(A1) = θ(r′)d/2k and that vol(A2) > θ(r′)d/2kd1/p.
Hence

|S| ≥ vol(A ∩ [0, 1]d)/(ηrn)d − Cη−(d−1)

≥ (1 + 1/d1/p)(1 − ηd1/p)dθη−d/2k − Cη−(d−1)

> (1 + ε)θη−d/2−k

≥ (1 + ε)
d − k

2d−1
θη−d,

(provided ε, η were chosen appropriately) so that S must contain a dense point.
Now consider the case when j > k. Then A ∩ [0, 1]2 contains

A1 := {z ∈ B+
j (p+

j , r′) : zi > (p+
j )i for i = 1, . . . , k},

A2 := {z ∈ B−
j (p−j , r′) : zi > (p+

j )i for i = 1, . . . , k}, and

A3 := {z ∈ B(p+
1 , r′) : (p−j )j < zj < (p+

j )j , and zi > (p+
1 )i for i = 1, . . . , k}.

Now A1, A2 both have volume θ(r′)d/2k+1 and A3 has volume at least θ(r′)d/2kd1/p. So again S

must contain a dense point.
The arguments that reduce (P2)-(P4) to the proof of (P1) work in the same way for other

dimensions and norms. In the proof of (P5) we now show that (with C1 < C2 suitable constants)
if two points p1, p2 have distance less than C1 and there is no path between them that stays
inside p1 + [−C2r, C2r]d, then in all but d of the sets p1 + [−kr, kr]d \ [−(k − 1)r, (k − 1)r]d : k =
C1 + 1, . . . , C2 there is a cube of side 1/2d1/p without a dense point inside it.

In the proof of (P6) we merely need to replace squares of side 5r with hypercubes of side Kr
for some suitable constant K.

Lemma 10 and its proof generalise to give that any connected, (non-random) geometric graph
in dimension d with the lp-norm has a spanning tree of maximum degree at most (2⌈d1/p⌉+1)d+1.

The proof of Theorem 6 also generalises with only minor modifications, the most important one
being in the definition of a clean-up path. For any dimension d and 1 < p ≤ ∞ there exists a finite
k such the unit ball wrt. the lp norm can be partitioned into k parts each of diameter ≤ 1 (covering
the ball by hypercubes of side 1/d1/p shows for instance that we can take k = (2⌈d1/p⌉)d.) We
can thus construct clean-up paths at each q ∈ Dη(V, r) that use k + 1 vertices from Vq.

4 Concluding remarks

In this paper we have shown that, with high probability, the least r for which the random geometric
graph G(n, r) is Hamiltonian coincides with the least r for which it has minimum degree at least 2.
Recall that a graph is pancyclic if it has cycles of all lenghts 3 ≤ k ≤ n. As shown by  Luczak [9],
the usual random graph becomes pancyclic at exactly the same time it loses its last vertex of degree
< 2. It is natural to ask whether a similar statement can be shown for the random geometric
graph. As it happens, the answer is yes. Our proof of Theorem 1 can be adapted to show:

Theorem 16. P [ρn(pancyclic) = ρn(minimum degree ≥ 2)] → 1 as n → ∞.
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This also implies that in Corollary 2 we can replace the word ”Hamiltonian” with ”pancyclic”.
Let us briefly explain how to adapt our proof of Theorem 1 to give Theorem 16. First note that the
proof would still have gone through if we had defined p ∈ Hη(r) to be dense if the corresponding
square contains at least 1000 points instead of 100. We will reconsider the way we constructed the
Hamilton cycle C, and show that for every 1 ≤ k ≤ n − 3 there are k points from V that we can
omit and construct a cycle through the remaining points applying Rules 1-3 in the same way as
in the proof of Theorem 6. For any set of vertices A ⊆ ⋃m

i=1 LKi we can construct a cycle through
V \ A by simply omitting the vertices of A and proceeding as in the proof of Theorem 6 (the
vertices of A will simply be omitted from the corresponding clean up paths). Thus we have cycles
of lengths n − k for k = 0, . . . ,

∑

i |LKi |. Let us now omit all vertices in
⋃

i≥1 LKi , and consider

K2. Since K2 is a clique, we can omit all vertices except b2
1, b

2
2 one by one and each time construct

a cycle through the remaining points. Let us omit VK2 \ {b2
1, b

2
2} as well as

⋃

i≥1 LKi in the sequel.

We can assume w.l.o.g. that P 2
1 , P 2

2 have no shortcuts (in other words we can assume they are
induced paths), because we could have easily insisted on this in the proof of Claim 11. This means
that each of these paths is the union of two stable sets. Notice that if {v1, . . . , vl} ⊆ B(p, 6r)
is a stable set then the discs B(v1, r/2), . . . , B(vl, r/2) are disjoint and contained in B(p, 6 1

2 ), so
that l ≤ π(6 1

2 )2/π(1
2 )2 = 169. This shows that P 2

1 , P 2
2 each have at most 338 vertices. For each

k = 1, . . . , |P 2
1 |+ |P 2

2 |−1 we can omit k points from Vp for some p ∈ P2 (since |Vp| ≥ 1000 > 2 ·338
this can be done). There is always a cycle through the remaining vertices. Now put back those
points from Vp and remove P 2

1 and P 2
2 . Again there is a cycle through all points that have not been

removed. Having removed VK2 and P 2
1 , P 2

2 , we can repeat the same procedure for i = 3, . . . , m. We
see that there is a cycle of length n−k for k = 0, . . . ,

∑m
i=1 |LKi|+

∑m
i=2 |VKi |+

∑m
i=2(|P i

1|+ |P i
2 |).

Removing
⋃m

i=1 LKi ,
⋃m

i=2 VKi and
⋃m

i=2 P i
1∪P i

2, we are only left with vertices of VK1 , and for each
p ∈ K1 we still have at least 1000− 2 = 998 points of Vp left over (it contains at most 2 endpoints
of P i

j s). We omit the remaining points one by one, starting with points in squares corresponding
to leafs of T. Once we have run out of those, we continue with points in squares corresponding to
leafs of the subtree of T induced by the nonempty squares, and so on. We see that are indeed able
to construct cycles of all lengths.

Observe that if δ(G) denotes the minimum degree of the graph G, then there can be at most
⌊δ(G)/2⌋ edge disjoint Hamilton cycles in G. Bollobás and Frieze [4] have shown that, with high
probability, the ordinary random graph has k edge-disjoint Hamilton cycles for the first time at
precisely the same moment it first achieves minimum degree 2k. Perhaps methods similar to ours
will prove:

Conjecture 17. ρn(there exist k edge disjoint Hamilton cycles ) = ρn(minimum degree ≥ 2k)
w.h.p., for any fixed k ∈ N.

Let Hδ denote the graph property that there are ⌊δ(G)/2⌋ edge disjoint Hamilton cycles in the
graph G. It has been conjectured (see e.g. [6]) that Hδ holds w.h.p. for all choices of the sequence
(mn)n in the G(n, mn) model. This is known to be true for choices of (mn)n for which G(n, mn)
has minimum degree o(ln n) w.h.p. (c.f. [7]), but it is still open in general. A natural question is
therefore:

Question 18. Does Hδ hold w.h.p. for the random geometric graph G(n, rn) for all choices of the
sequence (rn)n?
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[13] X. Pérez. Personal communication.

[14] J. Petit. Layout problems. PhD Thesis, Universitat Politècnica de Catalunya, 2001.
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