Robust Stabilization in a Behavioral Framework

H.L. Trentelman* Shaik Fiaz* K. Takaba†

*University of Groningen, The Netherlands
†Kyoto University, Japan

CDC, December 2009
Robust stabilization

Perturbed plant
(Nominal plant
+ Uncertainty)

w
Robust stabilization

Problem

Find a controller that stabilizes the nominal plant and all the plants in a specified neighborhood of the nominal plant.

Note: control by interconnection. The plant and controller share the variables on the terminals. No input output considerations, no signal flow, no feedback.
Robust stabilization

Problem
Find a controller that stabilizes the nominal plant and all the plants in a specified neighborhood of the nominal plant.

Note: control by interconnection. The plant and controller share the variables on the terminals. No input output considerations, no signal flow, no feedback.
Systems and behaviors

A dynamical system

\[\Sigma = (T, W, \mathcal{B}) \]

- \(T \) is the set of independent variables: time, space, time and space
- \(W \) is the set of dependent variables, signal space
- \(\mathcal{B} \subseteq W^T := \{ w | w \text{ function } T \rightarrow W \} \): the behavior
 - the admissible trajectories

Linear differential systems

In this lecture, \(T = \mathbb{R} \) (‘1D systems’)
- \(W = \mathbb{R}^q \), \(w : \mathbb{R} \rightarrow \mathbb{R}^q \), \((w_1(t), \ldots, w_q(t)) \)
- \(\mathcal{B} \) = solutions of a system of constant coefficient linear ODE’s.

For such \(\mathcal{B} \) there always existst \(R \in \mathbb{R}^{q \times q} \) such that

\[\mathcal{B} := \{ w \in L^1_{loc}(\mathbb{R}, \mathbb{R}^q) | R \left(\frac{d}{dt} \right) w = 0 \} \]
Systems and behaviors

Notation

\[\Sigma = (\mathbb{R}, \mathbb{R}^q, \mathcal{B}) \in \mathcal{L}^q, \text{ or: } \mathcal{B} \in \mathcal{L}^q \]
\[\mathcal{B} = \text{ker}(R(\frac{d}{dt})). \] This is called a kernel representation of \(\mathcal{B} \).

Integer invariants associated with \(\mathcal{B} \):
output cardinality \(p(\mathcal{B}) := \) number of outputs of \(\mathcal{B} \),
input cardinality \(m(\mathcal{B}) := \) number of inputs of \(\mathcal{B} \).

\[m(\mathcal{B}) + p(\mathcal{B}) = q. \]

Controllability

\(\mathcal{B} \in \mathcal{L}^q \) is called controllable if for all \(w_1, w_2 \in \mathcal{B} \) there exists \(T \geq 0 \) and \(w \in \mathcal{B} \) such that \(w(t) = w_1(t) \) for \(t < 0 \), and \(w(t) = w_2(t - T) \) for \(t \geq 0 \).

Notation: \(\mathcal{L}_{\text{cont}}^q \) subset of \(\mathcal{L}^q \) of controllable behaviors.
Rational representations

Neighborhood of a plant

How to formalize the concept of neighborhood of a given plant?
Rational representations

Neighborhood of a plant
How to formalize the concept of neighborhood of a given plant?

Rational kernel representations

Question
What do we mean by $R \left(\frac{d}{dt} \right) w = 0$ if $R(\xi)$ is rational?
Rational representations

Neighborhood of a plant

How to formalize the concept of neighborhood of a given plant?

Rational kernel representations

Question

What do we mean by \(R \left(\frac{d}{dt} \right) w = 0 \) if \(R(\xi) \) is rational?

J.C. Willems and Y. Yamamoto 2007:

Left coprime factorization

\(R = P^{-1}Q \) is called a left coprime factorization (LCPF) over \(\mathbb{R}[\xi] \) of \(R \) if

1. \(\det(P) \neq 0 \)
2. the matrix \((P \ Q) \) is left prime over \(\mathbb{R}[\xi] \).
Rational representations

Meaning of $R\left(\frac{d}{dt}\right)w = 0$?

If $R = P^{-1}Q$ is LCPF, then $[R\left(\frac{d}{dt}\right)w = 0] \iff [Q\left(\frac{d}{dt}\right)w = 0]$.

Example

Let $\mathbb{B} := \{(w_1, w_2) \mid \frac{d}{dt}w_1 + \frac{1}{d}w_2 = 0\}$. Since

$R(\xi) = \begin{pmatrix} \xi & \frac{1}{\xi} \end{pmatrix} = \frac{1}{\xi}(\xi^2 \ 1) = P^{-1}Q$ is a LCPF

with $P = \xi$ and $Q = \begin{bmatrix} \xi^2 & 1 \end{bmatrix}$

by definition $\mathbb{B} = \{(w_1, w_2) \mid \frac{d^2}{dt^2}w_1 + w_2 = 0\}$.

Note

If \mathbb{B} is controllable it admits a representation $R\left(\frac{d}{dt}\right)w = 0$, where R is proper, stable (has all poles in \mathbb{C}^-), co-inner $(R(\xi)R^T(\xi) = I)$ and left prime (proper stable right-inverse).
Ball around the nominal plant

Let the nominal plant $\mathcal{P} \in \mathcal{L}_{\text{cont}}^q$ be represented by

$$\mathcal{P} = \{ w \mid R\left(\frac{d}{dt}\right)w = 0 \},$$

where R is proper, stable, co-inner and left prime. For a given $\gamma > 0$ define the ball around \mathcal{P} with radius γ:

$$B(\mathcal{P}, \gamma) := \{ \mathcal{P}_\Delta \in \mathcal{L}_{\text{cont}}^q \mid \exists \text{ a proper, stable, f.r.r. rational } R_\Delta \text{ such that } \mathcal{P}_\Delta = \ker(R_\Delta(\frac{d}{dt}))$$

and $\|R - R_\Delta\|_\infty \leq \gamma \}$.

Lemma

All proper, stable, co-inner, left prime kernel representations $R\left(\frac{d}{dt}\right)w = 0$ of \mathcal{P} yield the same ball $B(\mathcal{P}, \gamma)$.
Problem formulation

A behavior $\mathcal{B} \in \mathcal{L}^q$ is called **stable** if for all $w \in \mathcal{B}$ we have $\lim_{t \to \infty} w(t) = 0$.

Recall: **output cardinality** of $\mathcal{B} \in \mathcal{L}^q$: $p(\mathcal{B}) :=$ the number of outputs of \mathcal{B}.

Full interconnection of $\mathcal{P} \in \mathcal{L}^q$ and $\mathcal{C} \in \mathcal{L}^q$: the intersection $\mathcal{P} \cap \mathcal{C}$.

The interconnection is called **regular** if $p(\mathcal{P} \cap \mathcal{C}) = p(\mathcal{P}) + p(\mathcal{C})$.

Robust stabilization problem

Given a radius $\gamma > 0$, find a controller $\mathcal{C} \in \mathcal{L}^q$ such that $\mathcal{P}_\Delta \cap \mathcal{C}$ is stable and a regular interconnection for all $\mathcal{P}_\Delta \in B(\mathcal{P}, \gamma)$.

Optimal robust stabilization

Find

$$\gamma^* := \sup \{ \gamma > 0 \mid \exists \mathcal{C} \in \mathcal{L}^q : \mathcal{P}_\Delta \cap \mathcal{C} \text{ is stable and a regular interconnection for all } \mathcal{P}_\Delta \in B(\mathcal{P}, \gamma) \}.$$
Dissipative linear differential systems

Dissipativity

Let $\mathcal{B} \in \mathcal{L}^q_{\text{cont}}, \Sigma = \Sigma^T \in \mathbb{R}^{q \times q}$. The quadratic form $\mathbf{w}^T \Sigma \mathbf{w}$ is called a supply rate.

\mathcal{B} is called Σ-dissipative if
\[\int_{-\infty}^{+\infty} \mathbf{w}^T \Sigma \mathbf{w} \, dt \geq 0 \]
for all $\mathbf{w} \in \mathcal{B} \cap \mathcal{D}$.

\mathcal{B} is said to be strictly Σ-dissipative if there exists an $\epsilon > 0$ such that \mathcal{B} is $(\Sigma - \epsilon I)$-dissipative.

\mathcal{B} is Σ-dissipative if and only if there exists a QDF Q_{ψ} (a storage function) such that
\[\frac{d}{dt} Q_{\psi}(\mathbf{w}) \leq \mathbf{w}^T \Sigma \mathbf{w} \quad \forall \mathbf{w} \in \mathcal{B}. \]

Storage functions are quadratic functions of the state of \mathcal{B}: given a minimal state x for \mathcal{B} there exists $K = K^T \in \mathbb{R}^{n \times n}$ such that $Q_{\psi}(\mathbf{w}) = x^T K x$.

Q_{ψ} is called positive definite (negative definite) if $K > 0$ ($K < 0$).
Dissipativity synthesis problem

Let $\mathcal{P}_{\text{full}} \in \mathcal{L}^{w+v+c}$, $\mathcal{C} \in \mathcal{L}^{c}$. Then we define the interconnection through c as

$$\mathcal{P}_{\text{full}} \wedge_c \mathcal{C} := \{(w, v, c) \mid (w, v, c) \in \mathcal{P}_{\text{full}} \text{ and } c \in \mathcal{C}\}.$$

Definitions

- A controller \mathcal{C} is called regular if the interconnection of $\mathcal{P}_{\text{full}}$ and \mathcal{C} is regular, i.e. $p(\mathcal{P}_{\text{full}} \wedge_c \mathcal{C}) = p(\mathcal{P}_{\text{full}}) + p(\mathcal{C})$
- A controller \mathcal{C} is called disturbance free if v is free in $\mathcal{P}_{\text{full}} \wedge_c \mathcal{C}$
- A controller \mathcal{C} is called stabilizing if it is disturbance free and
 $$[(w, 0, c) \in \mathcal{P}_{\text{full}} \wedge_c \mathcal{C}] \Rightarrow \lim_{t \to \infty} w(t) = 0.$$
- For $\gamma > 0$, a controller $\mathcal{C} \in \mathcal{L}^{c}$ is called strictly γ-contracting if $\exists \epsilon > 0$ such that $\forall (w, v) \in (\mathcal{P}_{\text{full}} \wedge_c \mathcal{C})_{(w,v)} \cap \mathcal{L}^{2}$ we have
 $$\|w\|_2 \leq \left(\frac{1}{\gamma} - \epsilon\right)\|v\|_2.$$

Such controller \mathcal{C} is said to be a solution to the dissipativity synthesis problem.
Solution to the dissipativity synthesis problem

For a given behavior $\mathcal{B} \in \mathcal{L}_\text{cont}^q$ define

$$\mathcal{B}^\perp := \{ w \mid \int_{\mathbb{R}} w^\top w' = 0 \ \forall w' \in \mathcal{B} \cap \mathcal{D} \}$$

Notation: $(\mathcal{P}_\text{full})_{(w,v)} := \{ (w,v) \mid \exists c : (w,v,c) \in \mathcal{P}_\text{full} \}$.

Let $\Sigma_\gamma := \begin{pmatrix} -I & 0 \\ 0 & \frac{1}{\gamma^2}I \end{pmatrix}$.

Theorem (Trentelman and Willems 1999):

Let $\mathcal{P}_\text{full} \in \mathcal{L}_u^{q+v+c}$ be controllable. Assume v is free, (w,v) is detectable from c, and c is observable from (w,v). Let $\gamma > 0$. There exists a solution \mathcal{C} to the dissipativity synthesis problem if and only if $(\mathcal{P}_\text{full})_{(w,v)}^\perp$ is $-\Sigma_\gamma^{-1}$-dissipative and has a negative definite storage function.
Small gain argument

Back to the robust stabilization problem:
Again, let $\mathcal{P} = \{ w \mid R(\frac{d}{dt})w = 0 \}$ be the nominal plant, with R proper, stable and co-inner.

$$\mathcal{P}_{aux} := \{ (w, v, c) \mid R(\frac{d}{dt})w + v = 0, \ c = w \}.$$ Let $R(\xi) = P^{-1}(\xi)Q(\xi)$ be a LCPF with P Hurwitz. Then by definition

$$\mathcal{P}_{aux} = \{ (w, v, c) \mid Q(\frac{d}{dt})w + P(\frac{d}{dt})v = 0, \ c = w \}.$$ Small gain theorem

Let $\gamma > 0$. Let $C \in \mathcal{L}^q$. Then $\mathcal{P}_\Delta \cap C$ is stable and a regular interconnection for all $\mathcal{P}_\Delta \in B(\mathcal{P}, \gamma)$ if and only if C is a solution to the dissipativity synthesis problem for \mathcal{P}_{aux}.
Solution to the robust stabilization problem

As

- v is free in \mathcal{P}_{aux} (since Q has a full row rank)
- c is observable from (w, v) in \mathcal{P}_{aux}
- (w, v) is detectable from c

Theorem

Let $\gamma > 0$. There exists a controller $C \in \mathcal{L}^q$ such that $\mathcal{P}_\Delta \cap C$ is stable and a regular interconnection for all $\mathcal{P}_\Delta \in B(\mathcal{P}, \gamma)$ if and only if $(\mathcal{P}_{\text{aux}})_{(w,v)}^\perp$ is strictly $-\Sigma_{\gamma}^{-1}$ dissipative and has a negative definite storage function.

Computation

Condition for existence is representation free. Computation of required C from a kernel or image representation of $\mathcal{P}_{\text{full}}$ involves polynomial spectral factorization.
Optimal robust stabilization

Problem

Find

\[\gamma^* := \sup \{ \gamma > 0 \mid \exists C \in \mathcal{L}^q : \mathcal{P}_\Delta \cap C \text{ is stable and a regular interconnection for all } \mathcal{P}_\Delta \in B(\mathcal{P}, \gamma) \}. \]

By the previous theorem: \(\gamma^* \) is the supremum over all \(\gamma > 0 \) such that \((\mathcal{P}_{\text{aux}})_{(w,v)}^\perp\) is strictly \(-\Sigma_{\gamma}^{-1}\) dissipative and has a negative definite storage function.

It can be shown: \((\mathcal{P}_{\text{aux}})_{(w,v)}^\perp\) is strictly \(-\Sigma_{\gamma}^{-1}\) dissipative if and only if \(0 < \gamma < 1\).

So: the real issue to compute the supremum over all \(0 < \gamma < 1\) for which the smallest storage function is negative definite.
Solution to the optimal robust stabilization problem

Recall: \(P \) is the nominal plant. Consider the system \(P^\perp \) with manifest variable \(\tilde{w} \). \(P^\perp \) is (trivially) strictly dissipative w.r.t \(\| \tilde{w} \|^2 \).

Let the maximal and minimal storage functions be given by \(\Psi^+(\zeta, \eta) \) and \(\Psi^-(\zeta, \eta) \) respectively. These can be computed by means of polynomial spectral factorization.

The smallest storage function of \((P_{\text{aux}})^\perp \) as a \(-\Sigma^{-1} \)-dissipative system is given by the two-variable polynomial matrix \(\Psi_{\gamma} = (1 - \gamma^2)\Psi_- + \gamma^2\Psi_+ \).

Coefficient matrices of \(\Psi_+(\zeta, \eta) \) and \(\Psi_-(\zeta, \eta) \): \(\tilde{\Psi}_- \) and \(\tilde{\Psi}_+ \).

Theorem

\[
\gamma^* = \sqrt{\frac{\lambda_{\text{max}}(\tilde{\Psi}_- \tilde{\Psi}_+^\perp)}{\lambda_{\text{max}}(\tilde{\Psi}_- \tilde{\Psi}_+^\perp) - 1}}.
\]

In particular, for \(\gamma > 0 \) the following holds: there exists \(C \in \mathcal{L}^q \) such that \(P_\Delta \cap C \) is stable for all \(P_\Delta \in B(P, \gamma) \) if and only if \(\gamma < \gamma^* \). \(\tilde{\Psi}_+^\perp \) is the Moore-Penrose matrix inverse of \(\tilde{\Psi}_+ \).
Concluding remarks

1. Representation free conditions for the existence of a robustly stabilizing controller were obtained.

2. Optimal γ^* was obtained using storage functions of \mathcal{P}^\perp.

3. Extending the results to:
 - different perturbations, for example nominal plant is given by $w = M(\frac{d}{dt})\ell$ and perturbed plant is given by $w = (M + \Delta)\ell$,
 - connection with gap metric between behaviors,
 - the partial interconnection case.

THANKS FOR YOUR ATTENTION