SENSE AND SIMPLICITY:

a talk on two matrices

on the occasion of Malo Hautus’ afscheidsrede

Harry Trentelman
University of Groningen, The Netherlands
Controllability and the Hautus test
Controllability

Linear dynamical system with inputs:

\[\dot{x}(t) = Ax(t) + Bu(t) \]

\(x(t) \in \mathbb{R}^n \), the state, \(u(t) \in \mathbb{R}^m \), control input, \(A \in M_{n \times n} (\mathbb{R}) \), \(B \in M_{n \times m}(\mathbb{R}) \).
Controllability

Linear dynamical system with inputs:

\[\dot{x}(t) = Ax(t) + Bu(t) \]

\(x(t) \in \mathbb{R}^n \), the state, \(u(t) \in \mathbb{R}^m \), control input, \(A \in M_{n \times n}(\mathbb{R}) \), \(B \in M_{n \times m}(\mathbb{R}) \).

The system is called **controllable** if for every pair of states \(x_0, x_1 \) there exists \(T > 0 \) and an input function \(u \) on \([0, T]\) such that \(x(0) = x_0 \) and \(x(T) = x_1 \).
Controllability

Linear dynamical system with inputs:

\[\dot{x}(t) = Ax(t) + Bu(t) \]

\(x(t) \in \mathbb{R}^n \), the state, \(u(t) \in \mathbb{R}^m \), control input, \(A \in M_{n \times n}(\mathbb{R}) \), \(B \in M_{n \times m}(\mathbb{R}) \).

The system is called **controllable** if for every pair of states \(x_0, x_1 \) there exists \(T > 0 \) and an input function \(u \) on \([0, T] \) such that \(x(0) = x_0 \) and \(x(T) = x_1 \).

We say: the pair \((A, B)\) is controllable. *Kalman, 1963*
Test for controllability

\[n \times nm \text{ matrix } (B, AB, A^2B, \ldots, A^{n-1}B) \]
Test for controllability

\(n \times nm \) matrix \((B, AB, A^2B, \ldots, A^{n-1}B) \)

Theorem (Kalman 1963): \((A, B)\) is controllable if and only if \((B, AB, A^2B, \ldots, A^{n-1}B)\) has rank \(n\).
Test for controllability

\[n \times nm \text{ matrix } (B, AB, A^2B, \ldots, A^{n-1}B) \]

Theorem (Kalman 1963): \((A, B)\) is controllable if and only if \((B, AB, A^2B, \ldots, A^{n-1}B)\) has rank \(n\).

\[\text{im}(B, AB, A^2B, \ldots, A^{n-1}B) \subseteq \mathbb{R}^n \] is equal to the the reachable subspace

\[\{ x_1 \in \mathbb{R}^n \mid \exists u \text{ such that } x(0) = 0 \text{ and } x_1 = x(T) \} \]
The Hautus test

Main result:
The Hautus test

Main result:

Theorem (Hautus 1969): (A, B) is controllable if and only if the $\begin{bmatrix} n 	imes (n + m) \end{bmatrix}$ matrix $(A - \lambda I, B)$ has rank n for every eigenvalue λ of A.
The Hautus test

Main result:

Theorem (Hautus 1969): (A, B) is controllable if and only if the $n \times (n + m)$ matrix $(A - \lambda I, B)$ has rank n for every eigenvalue λ of A.

Equivalently: there is no left eigenvector of A that is a left zero vector of B.
Proving the Hautus test

Standard result in every introductory course to linear systems.

(⇒)
Proving the Hautus test

Standard result in every introductory course to linear systems.

\[(\Leftrightarrow)\]

\[
\begin{align*}
\text{rank}(A - \lambda I, B) < n & \implies \\
\exists \eta \neq 0 \text{ such that } \eta A = \lambda \eta, \eta B = 0 & \implies \\
\exists \eta \neq 0 \text{ such that } \eta(B, AB, A^2B, \ldots, A^{n-1}B) = 0 & \implies \\
\text{rank}(B, AB, A^2B, \ldots, A^{n-1}B) < n & \implies \\
(A, B) \text{ not controllable}
\end{align*}
\]
Proving the Hautus test

(⇔)
(⇐)

Up to now (for students in Groningen):
assume \((A, B)\) not controllable. Then the reachable subspace is a proper \(A\)-invariant subspace of \(\mathbb{R}^n\) containing \(\text{im}(B)\)
Proving the Hautus test

\(\iff \)

Up to now (for students in Groningen): assume \((A, B)\) not controllable. Then the reachable subspace is a proper \(A\)-invariant subspace of \(\mathbb{R}^n\) containing \(\text{im}(B)\).

Write matrices for \(A\) and \(B\) with respect to a basis adapted to this subspace.
This yields a contradiction with \((A - \lambda I, B)\) full row rank for all \(\lambda\).
Proving the Hautus test

\[(\Leftarrow)\]

Up to now (for students in Groningen):
assume \((A, B)\) not controllable. Then the reachable subspace is a proper \(A\)-invariant subspace of \(\mathbb{R}^n\) containing \(\text{im}(B)\)

Write matrices for \(A\) and \(B\) with respect to a basis adapted to this subspace.
This yields a contradiction with \((A - \lambda I, B)\) full row rank for all \(\lambda\).

In the original paper from 1969 one can find Malo’s original proof:
Proving the Hautus test

(\iffalse)

Up to now (for students in Groningen):
assume \((A, B) \) not controllable. Then the reachable subspace is a
proper \(A \)-invariant subspace of \(\mathbb{R}^n \) containing \(\text{im}(B) \)

Write matrices for \(A \) and \(B \) with respect to a basis adapted to this
subspace.
This yields a contradiction with \((A - \lambda I, B) \) full row rank for all \(\lambda \).

In the original paper from 1969 one can find Malo’s original proof:

Sense and Simplicity!
Hautus’ proof of the Hautus test

(⇐)
Hautus’ proof of the Hautus test

\[(\iff)\]

\((A, B)\) not controllable \(\Rightarrow\)
\(\exists \eta \neq 0\) such that \(\eta(B, AB, A^2B, \ldots, A^{n-1}B) = 0\)
Hautus’ proof of the Hautus test

\((\Leftarrow)\)

\((A, B)\) not controllable \(\Rightarrow\)
\(\exists \eta \neq 0 \text{ such that } \eta(B, AB, A^2B, \ldots, A^{n-1}B) = 0\)

Let \(\psi(z)\) minimal degree polynomial such that \(\eta \psi(A) = 0\)
Then \(\deg(\psi) \geq 1\)
(⇐)

\((A, B)\) not controllable \(\Rightarrow\)
\(\exists \eta \neq 0 \text{ such that } \eta(B, AB, A^2B, \ldots, A^{n-1}B) = 0\)

Let \(\psi(z)\) minimal degree polynomial such that \(\eta\psi(A) = 0\)

Then \(\deg(\psi) \geq 1\)

Factorize \(\psi(z) = \phi(z)(z - \lambda)\).

Then \(0 = \eta\psi(A) = \eta\phi(A)(A - \lambda I)\)
Hautus’ proof of the Hautus test

\((\iff)\)

\((A, B)\) not controllable \(\Rightarrow\)
\(\exists \eta \neq 0\) such that \(\eta(B, AB, A^2B, \ldots, A^{n-1}B) = 0\)

Let \(\psi(z)\) minimal degree polynomial such that \(\eta\psi(A) = 0\)
Then \(\text{deg}(\psi) \geq 1\)

Factorize \(\psi(z) = \phi(z)(z - \lambda)\).
Then \(0 = \eta\psi(A) = \eta\phi(A)(A - \lambda I)\)

Define \(\zeta := \eta\phi(A)\). Note: \(\zeta \neq 0!\)
Then \(\zeta A = \lambda \zeta\). Also \(\zeta B = \eta\phi(A)B = 0\). Contradiction!
Hautus’ proof of the Hautus test

\[(\iffleq)

\((A, B)\) not controllable \(\implies\)
\(\exists \, \eta \neq 0 \text{ such that } \eta(B, AB, A^2B, \ldots, A^{n-1}B) = 0\)

Let \(\psi(z)\) minimal degree polynomial such that \(\eta \psi(A) = 0\)
Then \(\deg(\psi) \geq 1\)

Factorize \(\psi(z) = \phi(z)(z - \lambda)\).
Then \(0 = \eta \psi(A) = \eta \phi(A)(A - \lambda I)\)

Define \(\zeta := \eta \phi(A)\). Note: \(\zeta \neq 0\!\)!
Then \(\zeta A = \lambda \zeta\). Also \(\zeta B = \eta \phi(A) B = 0\). Contradiction!

nice proof!
Motivated by this nice little proof I decided to take a closer look at the original paper.
Motivated by this nice little proof I decided to take a closer look at the original paper.

I found several other interesting results with equally nice proofs!
Motivated by this nice little proof I decided to take a closer look at the original paper

I found several other interesting results with equally nice proofs!

I will discuss one of these because it will be useful in the pole placement problem later on.
Reduction of the number of inputs

Again we look at the system

\[\dot{x}(t) = Ax(t) + Bu(t) \]

\(x(t) \in \mathbb{R}^n \), the state space, \(u(t) \in \mathbb{R}^m \), control input, \(A \in M_{n \times n}(\mathbb{R}), B \in M_{n \times m}(\mathbb{R}) \). Note: \(m \) is the number of inputs.
Reduction of the number of inputs

Again we look at the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$x(t) \in \mathbb{R}^n$, the state space, $u(t) \in \mathbb{R}^m$, control input, $A \in M_{n \times n}(\mathbb{R}), B \in M_{n \times m}(\mathbb{R})$. Note: m is the number of inputs.

Question: can we reduce the number of inputs so that the system remains controllable?
Reduction of the number of inputs

Again we look at the system

\[\dot{x}(t) = Ax(t) + Bu(t) \]

\(x(t) \in \mathbb{R}^n \), the state space, \(u(t) \in \mathbb{R}^m \), control input, \(A \in M_{n \times n}(\mathbb{R}) \), \(B \in M_{n \times m}(\mathbb{R}) \). Note: \(m \) is the number of inputs.

Question: can we reduce the number of inputs so that the system remains controllable?

Does there exists \(C \in M_{m \times m'}(\mathbb{R}) \) with \(m' < m \) such that the system

\[\dot{x}(t) = Ax(t) + BCv(t) \]

with \(v(t) \in \mathbb{R}^{m'} \) is still controllable?
Reduction of the number of inputs

Let λ be an eigenvalue of A

$\omega(\lambda) := \text{the maximal number of eigenvectors with eigenvalue } \lambda$

$\omega(\lambda) = n - \text{rank}(A - \lambda I)$

$\omega(A) := \max_{\lambda} \omega(\lambda)$
Reduction of the number of inputs

Let λ be an eigenvalue of A

$\omega(\lambda) := \text{the maximal number of eigenvectors with eigenvalue } \lambda$

$\omega(\lambda) = n - \text{rank}(A - \lambda I)$

$\omega(A) := \max_{\lambda} \omega(\lambda)$

Theorem: If (A, B) is controllable then there exists a $m \times \omega(A)$ matrix C such that (A, BC) is controllable.
Reduction of the number of inputs

Let λ be an eigenvalue of A

$\omega(\lambda) :=$ the maximal number of eigenvectors with eigenvalue λ

$\omega(\lambda) = n - \text{rank}(A - \lambda I)$

$\omega(A) := \max_{\lambda} \omega(\lambda)$

Theorem: If (A, B) is controllable then there exists a $m \times \omega(A)$ matrix C such that (A, BC) is controllable.

The number of inputs can be reduced to $\omega(A)$
Reduction of the number of inputs

Let λ be an eigenvalue of A
\[\omega(\lambda) := \text{the maximal number of eigenvectors with eigenvalue } \lambda \]
\[\omega(\lambda) = n - \text{rank}(A - \lambda I) \]
\[\omega(A) := \max_{\lambda} \omega(\lambda) \]

Theorem: If (A, B) is controllable then there exists a $m \times \omega(A)$ matrix C such that (A, BC) is controllable.

The number of inputs can be reduced to $\omega(A)$

Example: if A has n distinct eigenvalues then $\omega(A) = 1$.
Reduction of the number of inputs

How to find such $m \times \omega(A)$ matrix C'? Use the Hautus test!
Reduction of the number of inputs

How to find such $m \times \omega(A)$ matrix C? Use the Hautus test!
Let $\lambda_1, \lambda_2, \ldots, \lambda_\nu$ be the distinct eigenvalues of A.
rank$(A - \lambda_k I, B) = n$
rank$(A - \lambda_k I) = n - \omega(\lambda_k)$
Reduction of the number of inputs

How to find such $m \times \omega(A)$ matrix C? Use the Hautus test!
Let $\lambda_1, \lambda_2, \ldots, \lambda_\nu$ be the distinct eigenvalues of A.

\[
\text{rank}(A - \lambda_k I, B) = n
\]
\[
\text{rank}(A - \lambda_k I) = n - \omega(\lambda_k)
\]

There must be $\omega(\lambda_k)$ columns of B that together with $n - \omega(\lambda_k)$ columns of $A - \lambda_k I$ form a basis of \mathbb{R}^n.

Hence: \exists a $m \times \omega(A)$ matrix C_k (only 1’s and 0’s) such that

\[
\text{rank}(A - \lambda_k I, BC_k) = n \quad (k = 1, 2 \ldots \nu)
\]
Reduction of the number of inputs

How to find such $m \times \omega(A)$ matrix C? Use the Hautus test!
Let $\lambda_1, \lambda_2, \ldots, \lambda_\nu$ be the distinct eigenvalues of A.

$\text{rank}(A - \lambda_k I, B) = n$
$\text{rank}(A - \lambda_k I) = n - \omega(\lambda_k)$

There must be $\omega(\lambda_k)$ columns of B that together with $n - \omega(\lambda_k)$ columns of $A - \lambda_k I$ form a basis of \mathbb{R}^n.

Hence: \exists a $m \times \omega(A)$ matrix C_k (only 1’s and 0’s) such that

$$\text{rank}(A - \lambda_k I, BC_k) = n \quad (k = 1, 2 \ldots \nu)$$

Parameter vector $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_\nu)$
Define $C(\alpha) = \alpha_1 C_1 + \alpha_2 C_2 + \ldots + \alpha_\nu C_\nu$
Reduction of the number of inputs

How to find such \(m \times \omega(A) \) matrix \(C \)? Use the \textbf{Hautus test}!

Let \(\lambda_1, \lambda_2, \ldots, \lambda_\nu \) be the distinct eigenvalues of \(A \).

\[
\text{rank}(A - \lambda_k I, B) = n \\
\text{rank}(A - \lambda_k I) = n - \omega(\lambda_k)
\]

There must be \(\omega(\lambda_k) \) columns of \(B \) that together with \(n - \omega(\lambda_k) \) columns of \(A - \lambda_k I \) form a basis of \(\mathbb{R}^n \).

Hence: \(\exists \) a \(m \times \omega(A) \) matrix \(C_k \) (only 1’s and 0’s) such that

\[
\text{rank}(A - \lambda_k I, BC_k) = n \quad (k = 1, 2 \ldots \nu)
\]

Parameter vector \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_\nu) \)

Define \(C(\alpha) = \alpha_1 C_1 + \alpha_2 C_2 + \ldots + \alpha_\nu C_\nu \)

The set of \(\alpha \)'s for which \((A, BC(\alpha)) \) is \textbf{not} controllable is the union of \(n \) proper algebraic varieties.
Hautus and the pole placement problem
The stabilization problem

Linear system: \[\dot{x}(t) = Ax(t) + Bu(t) \]
\[x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, A \in M_{n \times n}(\mathbb{R}), B \in M_{n \times m}(\mathbb{R}) \]
The stabilization problem

Linear system: \[\dot{x}(t) = Ax(t) + Bu(t) \]
\[x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, A \in M_{n\times n}(\mathbb{R}), B \in M_{n\times m}(\mathbb{R}) \]

State feedback \[u(t) = Fx(t), F \in M_{m\times n}(\mathbb{R}) \]
The stabilization problem

Linear system: $\dot{x}(t) = Ax(t) + Bu(t)$
$x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, A \in M_{n \times n}(\mathbb{R}), B \in M_{n \times m}(\mathbb{R})$

State feedback $u(t) = Fx(t), F \in M_{m \times n}(\mathbb{R})$

Controlled system $\dot{x}(t) = (A + BF)x(t)$
The stabilization problem

Linear system: \(\dot{x}(t) = Ax(t) + Bu(t) \)
\(x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, A \in M_{n \times n}(\mathbb{R}), B \in M_{n \times m}(\mathbb{R}) \)

State feedback \(u(t) = Fx(t), F \in M_{m \times n}(\mathbb{R}) \)

Controlled system \(\dot{x}(t) = (A + BF)x(t) \)

Stabilization problem: find \(F \) such that every eigenvalue \(\lambda \) of \(A + BF \) satisfies \(\Re(\lambda) < 0 \)
The stabilization problem

Linear system: \(\dot{x}(t) = Ax(t) + Bu(t) \)
\(x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, A \in M_{n \times n}(\mathbb{R}), B \in M_{n \times m}(\mathbb{R}) \)

State feedback \(u(t) = Fx(t), F \in M_{m \times n}(\mathbb{R}) \)

Controlled system \(\dot{x}(t) = (A + BF)x(t) \)

Stabilization problem: find \(F \) such that every eigenvalue \(\lambda \) of \(A + BF \) satisfies \(\Re(\lambda) < 0 \)

If such \(F \) exists then \((A, B) \) is called stabilizable
The stabilization problem

Linear system: $\dot{x}(t) = Ax(t) + Bu(t)$
$x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, A \in M_{n\times n}(\mathbb{R}), B \in M_{n \times m}(\mathbb{R})$

State feedback $u(t) = Fx(t), F \in M_{m \times n}(\mathbb{R})$

Controlled system $\dot{x}(t) = (A + BF)x(t)$

Stabilization problem: find F such that every eigenvalue λ of $A + BF$ satisfies $\Re(\lambda) < 0$

If such F exists then (A, B) is called stabilizable

Theorem (Hautus test for stabilizability): (A, B) is stabilizable if and only if $(A - \lambda I, B)$ has rank n for every eigenvalue λ of A with $\Re(\lambda) \geq 0$
The pole placement problem

System \(\dot{x}(t) = Ax(t) + Bu(t) \), state feedback \(u(t) = Fx(t) \)
The pole placement problem

System $\dot{x}(t) = Ax(t) + Bu(t)$, state feedback $u(t) = Fx(t)$

Eigenvalues of $A + BF$ are the roots of the characteristic polynomial χ_{A+BF} of $A + BF$.

Question: what are conditions on A and B such that for every monic, real polynomial p of degree n there exists $F \in M_{m \times n}(\mathbb{R})$ such that $\chi_{A+BF} = p$?
The pole placement problem

System \(\dot{x}(t) = Ax(t) + Bu(t) \), state feedback \(u(t) = Fx(t) \)

Eigenvalues of \(A + BF \) are the roots of the characteristic polynomial \(\chi_{A+BF} \) of \(A + BF \).

Question: what are conditions on \(A \) and \(B \) such that for every monic, real polynomial \(p \) of degree \(n \) there exists \(F \in M_{m \times n}(\mathbb{R}) \) such that \(\chi_{A+BF} = p \)?

The pole placement problem

System \(\dot{x}(t) = Ax(t) + Bu(t) \), state feedback \(u(t) = Fx(t) \)

Eigenvalues of \(A + BF \) are the roots of the characteristic polynomial \(\chi_{A+BF} \) of \(A + BF \).

Question: what are conditions on \(A \) and \(B \) such that for every monic, real polynomial \(p \) of degree \(n \) there exists \(F \in M_{m \times n}(\mathbb{R}) \) such that \(\chi_{A+BF} = p \)?

Theorem: For every polynomial
\[
p(z) = z^n + p_{n-1}z^{n-1} + \ldots + p_1z + p_0 \text{ with real coefficients there exists } F \in M_{m \times n}(\mathbb{R}) \text{ such that } \chi_{A+BF} = p
\]
if and only if \((A, B) \) is controllable.
Proving the pole placement theorem

In this audience, many people teach or have taught this to their students. The most common proof is as follows:
Proving the pole placement theorem

In this audience, many people teach or have taught this to their students. The most common proof is as follows:

\[(\Rightarrow)\]

\((A, B)\) not controllable \(\Rightarrow\)
\[\exists \lambda\text{ and } \eta \neq 0\text{ such that } \eta A = \lambda \eta \text{ and } \eta B = 0 \Rightarrow\]
For every \(F\) we have \(\eta(A + BF) = \lambda \eta \Rightarrow\)
For every \(F\), \(\lambda\) is an eigenvalue of \(A + BF\) \(\Rightarrow\)
there exists a polynomial \(p\) with \(\chi_{A+BF} \neq p\) for all \(F\) (take any polynomial such that \(p(\lambda) \neq 0\))
Proving the pole placement theorem

(⇐)
Proving the pole placement theorem

\[(\Longleftrightarrow)\]

For the converse implication we need to construct for every monic, real polynomial \(p\) of degree \(n\) a \(F \in M_{m \times n}(\mathbb{R})\) such that
\[\chi A + BF = p\]
Proving the pole placement theorem

\[(\Leftarrow)\]

For the converse implication we need to construct for every monic, real polynomial \(p \) of degree \(n \) a \(F \in M_{m \times n}(\mathbb{R}) \) such that
\[\chi A + BF = p \]

Proving the pole placement theorem

\[\begin{align*}
(\Leftarrow)
\end{align*}\]

For the converse implication we need to construct for every monic, real polynomial \(p \) of degree \(n \) a \(F \in M_{m \times n}(\mathbb{R}) \) such that
\[\chi A + BF = p\]

Heymann’s lemma: Let \((A, B)\) be controllable and let \(b_1, b_2, \ldots, b_m\) be the column vectors of \(B\). Then for any \(i = 1, 2, \ldots, m\) there exists \(F_i \in M_{m \times n}(\mathbb{R})\) such that \((A + BF_i, b_i)\) is controllable
Proving the pole placement theorem

Heymann’s lemma reduces the problem to the controllable case with one input. This is an easy problem:
Heymann’s lemma reduces the problem to the controllable case with one input. This is an easy problem:

With respect to a suitable basis, $A + BF_i$ is in ‘companion form’ and $b_i = (0, 0, \ldots, 1)^T$.
Proving the pole placement theorem

Heymann’s lemma reduces the problem to the controllable case with one input. This is an easy problem:

With respect to a suitable basis, \(A + BF_i \) is in ‘companion form’ and \(b_i = (0, 0, \ldots, 1)^T \).

Less known: in the paper by Malo Hautus, ‘Stabilization, controllability and observability of linear autonomous systems’, Proceedings Koninklijke Nederlandse Academie voor Wetenschappen, series A, 1970, there is a completely different proof, that does not use Heymann’s lemma!
Heymann’s lemma reduces the problem to the controllable case with one input. This is an easy problem:

With respect to a suitable basis, $A + BF_i$ is in ‘companion form’ and $b_i = (0, 0, \ldots, 1)^T$.

Less known: in the paper by Malo Hautus, ‘Stabilization, controllability and observability of linear autonomous systems’, Proceedings Koninklijke Nederlandse Academie voor Wetenschappen, series A, 1970, there is a completely different proof, that does not use Heymann’s lemma!

I would like to take a look at that proof here: history of Systems Theory!
A theorem of R. Rado

Theorem: If $\Sigma = \{S_1, S_2, \ldots, S_n\}$ is a collection of subsets of a vector space V such that for $k = 1, 2, \ldots, n$ the union of each k-tuple of sets in Σ contains at least k independent vectors, then there exists a set of independent vectors $\{x_1, x_2, \ldots, x_n\}$ in V such that $x_k \in S_k$ $(k = 1, 2 \ldots, n)$.
A theorem of R. Rado

Theorem: If \(\Sigma = \{ S_1, S_2, \ldots, S_n \} \) is a collection of subsets of a vector space \(V \) such that for \(k = 1, 2, \ldots, n \) the union of each \(k \)-tuple of sets in \(\Sigma \) contains at least \(k \) independent vectors, then there exists a set of independent vectors \(\{ x_1, x_2, \ldots, x_n \} \) in \(V \) such that \(x_k \in S_k \) \((k = 1, 2 \ldots, n)\).

Corollary (finite dimensional case): If \(\{ M_1, M_2, \ldots, M_n \} \) is a collection of matrices with \(n \) rows such that
\[
\text{rank}(M_{i_1}, M_{i_2}, \ldots, M_{i_k}) \geq k
\]
for each choice of mutually distinct \(i_1, i_2, \ldots, i_k \), then there exists a basis \(\{ x_1, x_2, \ldots, x_n \} \) of \(\mathbb{R}^n \) with \(x_i \in \text{im}(M_i) \) \((i = 1, 2, \ldots, n)\).
A theorem of R. Rado

Theorem: If $\Sigma = \{S_1, S_2, \ldots, S_n\}$ is a collection of subsets of a vector space V such that for $k = 1, 2, \ldots, n$ the union of each k-tuple of sets in Σ contains at least k independent vectors, then there exists a set of independent vectors $\{x_1, x_2, \ldots, x_n\}$ in V such that $x_k \in S_k$ ($k = 1, 2 \ldots, n$).

Corollary (finite dimensional case): If $\{M_1, M_2, \ldots, M_n\}$ is a collection of matrices with n rows such that $\text{rank}(M_{i_1}, M_{i_2}, \ldots, M_{i_k}) \geq k$ for each choice of mutually distinct i_1, i_2, \ldots, i_k, then there exists a basis $\{x_1, x_2, \ldots, x_n\}$ of \mathbb{R}^n with $x_i \in \text{im}(M_i)$ ($i = 1, 2, \ldots, n$).
Hautus’ proof of the pole placement theorem

Lemma (Hautus): Let \((A, B)\) be controllable, and let \(\mu_1, \mu_2, \ldots, \mu_k\) be \(k\) distinct numbers \((1 \leq k \leq n)\) such that none of the \(\mu_i\) is an eigenvalue of \(A\). Define \(M_i \in M_{n \times m}(\mathbb{R})\) by

\[
M_i = (A - \mu_i I)^{-1} B \quad (i = 1, 2 \ldots k)
\]

Then \(\text{rank}(M_1, M_2, \ldots, M_k) \geq k\).
Lemma (Hautus): Let \((A, B)\) be controllable, and let \(\mu_1, \mu_2, \ldots, \mu_k\) be \(k\) distinct numbers \((1 \leq k \leq n)\) such that none of the \(\mu_i\) is an eigenvalue of \(A\). Define \(M_i \in M_{n \times m}(\mathbb{R})\) by

\[
M_i = (A - \mu_i I)^{-1} B \quad (i = 1, 2 \ldots k)
\]

Then \(\text{rank}(M_1, M_2, \ldots, M_k) \geq k\).

Proof: The proof uses the fact that if \((A, B)\) is controllable then for each \(k\) with \(1 \leq k \leq n\):

\[
\text{rank}(B, AB, \ldots, A^{k-1}B) \geq k
\]
Lemma (Hautus): Let \((A, B)\) be controllable, and let \(\mu_1, \mu_2, \ldots, \mu_k\) be \(k\) distinct numbers \((1 \leq k \leq n)\) such that none of the \(\mu_i\) is an eigenvalue of \(A\). Define \(M_i \in M_{n \times m}(\mathbb{R})\) by

\[
M_i = (A - \mu_i I)^{-1}B \quad (i = 1, 2 \ldots k)
\]

Then \(\text{rank}(M_1, M_2, \ldots, M_k) \geq k\).

Proof: The proof uses the fact that if \((A, B)\) is controllable then for each \(k\) with \(1 \leq k \leq n\):

\[
\text{rank}(B, AB, \ldots, A^{k-1}B) \geq k
\]
Hautus’ proof of the pole placement theorem

Lemma (Hautus): Let \((A, B)\) be controllable, and let \(\mu_1, \mu_2, \ldots, \mu_k\) be \(k\) distinct numbers \((1 \leq k \leq n)\) such that none of the \(\mu_i\) is an eigenvalue of \(A\). Define \(M_i \in M_{n \times m}(\mathbb{R})\) by

\[
M_i = (A - \mu_i I)^{-1}B \quad (i = 1, 2 \ldots k)
\]

Then \(\text{rank}(M_1, M_2, \ldots, M_k) \geq k\).

Proof: The proof uses the fact that if \((A, B)\) is controllable then for each \(k\) with \(1 \leq k \leq n\):

\[
\text{rank}(B, AB, \ldots, A^{k-1}B) \geq k
\]
Now let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be n distinct real numbers such that none of the λ_i is an eigenvalue of A.
Now let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be n distinct real numbers such that none of the λ_i is an eigenvalue of A.

The collection of matrices $\{M_1, M_2, \ldots, M_n\}$ with $M_k = (A - \lambda_k I)^{-1} B$ satisfies the corollary of Rado’s theorem.
Hautus’ proof of the pole placement theorem

Now let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be n distinct real numbers such that none of the λ_i is an eigenvalue of A

The collection of matrices $\{M_1, M_2, \ldots, M_n\}$ with $M_k = (A - \lambda_k I)^{-1} B$ satisfies the corollary of Rado’s theorem

Hence there is a basis $\{x_1, x_2, \ldots, x_n\}$ of \mathbb{R}^n such that $x_i \in \text{im}(M_i)$, i.e. $x_i = (A - \lambda_i I)^{-1} Bu_i$ for some u_i
Hautus’ proof of the pole placement theorem

Now let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be n distinct real numbers such that none of the λ_i is an eigenvalue of A.

The collection of matrices $\{M_1, M_2, \ldots, M_n\}$ with $M_k = (A - \lambda_k I)^{-1} B$ satisfies the corollary of Rado’s theorem.

Hence there is a basis $\{x_1, x_2, \ldots, x_n\}$ of \mathbb{R}^n such that $x_i \in \text{im}(M_i)$, i.e. $x_i = (A - \lambda_i I)^{-1} B u_i$ for some u_i.

Define $F_0 : \mathbb{R}^n \rightarrow \mathbb{R}^m$ by: $F_0 x_i := -u_i$ ($i = 1, 2, \ldots, n$).
Hautus’ proof of the pole placement theorem

Now let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be n distinct real numbers such that none of the λ_i is an eigenvalue of A

The collection of matrices $\{M_1, M_2, \ldots, M_n\}$ with $M_k = (A - \lambda_k I)^{-1} B$ satisfies the corollary of Rado’s theorem

Hence there is a basis $\{x_1, x_2, \ldots, x_n\}$ of \mathbb{R}^n such that $x_i \in \text{im}(M_i)$, i.e. $x_i = (A - \lambda_i I)^{-1} Bu_i$ for some u_i

Define $F_0 : \mathbb{R}^n \to \mathbb{R}^m$ by: $F_0 x_i := -u_i$ ($i = 1, 2, \ldots, n$)

Then $(A + BF_0)x_i = \lambda_i x_i$ ($i = 1, 2, \ldots, n$) so $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of $A + BF_0$ (distinct eigenvalues!)
Hautus’ proof of the pole placement theorem

Almost there...... We have now proven:
Hautus’ proof of the pole placement theorem

Almost there...... We have now proven:

Lemma: Let \((A, B)\) be controllable. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be distinct real numbers such that none of the \(\lambda_i\) is an eigenvalue of \(A\). Then there exists \(F_0 \in M_{m \times n}(\mathbb{R})\) such that \(\lambda_1, \lambda_2, \ldots, \lambda_n\) are the eigenvalues of \(A + BF_0\).
Almost there...... We have now proven:

Lemma: Let \((A, B)\) be controllable. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be distinct real numbers such that none of the \(\lambda_i\) is an eigenvalue of \(A\). Then there exists \(F_0 \in M_{m \times n}(\mathbb{R})\) such that \(\lambda_1, \lambda_2, \ldots, \lambda_n\) are the eigenvalues of \(A + BF_0\).

Note: already very close to pole placement: every polynomial \(p\) of the form \(p(z) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n)\) with \(\lambda_i \neq \lambda_j\) real and \(\lambda_i\) not an eigenvalue of \(A\) can be assigned.
Hautus’ proof of the pole placement theorem

Almost there...... We have now proven:

Lemma: Let \((A, B)\) be controllable. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be distinct real numbers such that none of the \(\lambda_i\) is an eigenvalue of \(A\). Then there exists \(F_0 \in M_{m \times n}(\mathbb{R})\) such that \(\lambda_1, \lambda_2, \ldots, \lambda_n\) are the eigenvalues of \(A + BF_0\).

Note: already very close to pole placement: every polynomial \(p\) of the form \(p(z) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n)\) with \(\lambda_i \neq \lambda_j\) real and \(\lambda_i\) not an eigenvalue of \(A\) can be assigned

And now? **The coupe de grâce:**
Hautus’ proof of the pole placement theorem

Almost there...... We have now proven:

Lemma: Let $\begin{pmatrix} A \end{pmatrix}, B$ be controllable. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct real numbers such that none of the λ_i is an eigenvalue of A. Then there exists $F_0 \in M_{m \times n}(\mathbb{R})$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of $A + BF_0$.

Note: already very close to pole placement: every polynomial p of the form $p(z) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n)$ with $\lambda_i \neq \lambda_j$ real and λ_i not an eigenvalue of A can be assigned

And now? The coupe de grâce:
Recall Hautus’s result from 1969: if (A, B) is controllable then there exists a $m \times \omega(A)$ matrix C such that (A, BC) is controllable.
Recall Hautus’s result from 1969: if \((A, B)\) is controllable then there exists a \(m \times \omega(A)\) matrix \(C\) such that \((A, BC)\) is controllable.

Now, start with a controllable pair \((A, B)\). Let \(F_0\) be such that the eigenvalues of \(A + BF_0\) are distinct.
Recall Hautus’s result from 1969: if \((A, B)\) is controllable then there exists a \(m \times \omega(A)\) matrix \(C\) such that \((A, BC)\) is controllable.

Now, start with a controllable pair \((A, B)\). Let \(F_0\) be such that the eigenvalues of \(A + BF_0\) are distinct.

Note that therefore \(\omega(A + BF_0) = 1\).

Also \((A + BF_0, B)\) is still controllable.

Hence there exists a \(m \times 1\) matrix \(c\) such that \((A + BF_0, Bc)\) is controllable: back in the controllable case with one input!
Recall Hautus’s result from 1969: if \((A, B)\) is controllable then there exists a \(m \times \omega(A)\) matrix \(C\) such that \((A, BC)\) is controllable.

Now, start with a controllable pair \((A, B)\).
Let \(F_0\) be such that the eigenvalues of \(A + BF_0\) are distinct.

Note that therefore \(\omega(A + BF_0) = 1\).
Also \((A + BF_0, B)\) is still controllable.
Hence there exists a \(m \times 1\) matrix \(c\) such that \((A + BF_0, Bc)\) is controllable: back in the controllable case with one input!

The remainder of the proof is unchanged (companion form with one input).
Recall Hautus’s result from 1969: if \((A, B)\) is controllable then there exists a \(m \times \omega(A)\) matrix \(C\) such that \((A, BC)\) is controllable.

Now, start with a controllable pair \((A, B)\) Let \(F_0\) be such that the eigenvalues of \(A + BF_0\) are distinct.

Note that therefore \(\omega(A + BF_0) = 1\). Also \((A + BF_0, B)\) is still controllable. Hence there exists a \(m \times 1\) matrix \(c\) such that \((A + BF_0, Bc)\) is controllable: back in the controllable case with one input!

The remainder of the proof is unchanged (companion form with one input).
In most texts on linear systems a proof using Heymann’s lemma is preferred..... (including the famous book ‘Linear Multivariable Control, a Geometric Approach’ by W.M. Wonham)
Hautus’ proof of Heymann’s lemma

In most texts on linear systems a proof using Heymann’s lemma is preferred..... (including the famous book ‘Linear Multivariable Control, a Geometric Approach’ by W.M. Wonham)

Apparently, Malo Hautus himself also prefers this proof: in the well-known paper ‘A simple proof of Heymann’s lemma’, IEEE Transactions on Automatic Control’, 1977, he presents a simple proof of Heymann’s lemma, self contained, only 21 lines
Hautus’ proof of Heymann’s lemma

In most texts on linear systems a proof using Heymann’s lemma is preferred..... (including the famous book ‘Linear Multivariable Control, a Geometric Approach’ by W.M. Wonham)

Apparently, Malo Hautus himself also prefers this proof: in the well-known paper ‘A simple proof of Heymann’s lemma’, IEEE Transactions on Automatic Control’, 1977, he presents a simple proof of Heymann’s lemma, self contained, only 21 lines

More evidence for this is the book ‘Control Theory for Linear Systems’ by H.L. Trentelman, A.A. Stoorvogel and M.L.J. Hautus unfortunately sold out....
I hope to have shared with you my enthusiasm about the work of Malo Hautus....
I hope to have shared with you my enthusiasm about the work of Malo Hautus....

I could continue with Malo’s beautiful work on the regulator problem, for which he developed new theory on the universal and individual solvability of linear matrix equations......
I hope to have shared with you my enthusiasm about the work of Malo Hautus....

I could continue with Malo’s beautiful work on the regulator problem, for which he developed new theory on the universal and individual solvability of linear matrix equations......

or his work within the ‘Geometrix Approach’ to linear systems and the idea of \((\xi, \omega)\) representations......
Sense and simplicity in Hautus’ work

I hope to have shared with you my enthusiasm about the work of Malo Hautus....

I could continue with Malo’s beautiful work on the regulator problem, for which he developed new theory on the universal and individual solvability of linear matrix equations......

or his work within the ‘Geometrix Approach’ to linear systems and the idea of (ξ, ω) representations......

or his work on the Linear Quadratic Control problem.......
I hope to have shared with you my enthusiasm about the work of Malo Hautus....

I could continue with Malo’s beautiful work on the regulator problem, for which he developed new theory on the universal and individual solvability of linear matrix equations......

or his work within the ‘Geometrix Approach’ to linear systems and the idea of \((\xi, \omega)\) representations......

or his work on the Linear Quadratic Control problem......

but I will have to stop here.....